Loading…

Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites

Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), pe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Brazilian Society of Mechanical Sciences and Engineering 2022-11, Vol.44 (11), Article 571
Main Authors: Haghbin, Amin, Naderi, Aliasghar, Mokhtari, S. Abolfazl
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c200t-d43ada151138e2899021db561d571016292e57a45198a02f9f7c72df2bc0f6923
container_end_page
container_issue 11
container_start_page
container_title Journal of the Brazilian Society of Mechanical Sciences and Engineering
container_volume 44
creator Haghbin, Amin
Naderi, Aliasghar
Mokhtari, S. Abolfazl
description Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP’s interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% & 20% regarding simple control GFRPs and 35% & 16% regarding conventional specimen, respectively.
doi_str_mv 10.1007/s40430-022-03881-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2731764022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731764022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-d43ada151138e2899021db561d571016292e57a45198a02f9f7c72df2bc0f6923</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AU8BwVt1kjRNepRl_YAFL3oOaTvd7dJNapIV9-RfN1rBm6cZhud9B54su6RwQwHkbSig4JADYzlwpWgujrIZVVDmvKzocdpLqXKhpDrNzkLYAnAmSjHLPpcfI_p-hzaagYS4bw_EWdLbiH4wu94an64e7TpuyDXZ9OsNecfBNX08kH43miYSj2F0NiBxHWmMr1PeGuvivkbS4uhCH7El68GEQLq-Rk8at5vO4Tw76cwQ8OJ3zrPX--XL4jFfPT88Le5WecMAYt4W3LSGCkq5QqaqChhta1HSVkgKtGQVQyFNIWilDLCu6mQjWduxuoGurBifZ1dT7-jd2x5D1Fu39za91ExyKssiuUsUm6jGuxA8dnpMbow_aAr6W7SeROsE6x_RWqQQn0IhwXaN_q_6n9QXNAKChw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731764022</pqid></control><display><type>article</type><title>Experimental study on interlaminar strength &amp; high velocity impact response of carbon nanotube deposited glass fiber composites</title><source>Springer Link</source><creator>Haghbin, Amin ; Naderi, Aliasghar ; Mokhtari, S. Abolfazl</creator><creatorcontrib>Haghbin, Amin ; Naderi, Aliasghar ; Mokhtari, S. Abolfazl</creatorcontrib><description>Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP’s interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% &amp; 20% regarding simple control GFRPs and 35% &amp; 16% regarding conventional specimen, respectively.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-022-03881-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ballistic impact tests ; Carbon nanotubes ; Electrophoretic deposition ; Energy absorption ; Engineering ; Fiber composites ; Fiber reinforced polymers ; Glass fiber reinforced plastics ; Impact response ; Interfacial shear strength ; Load transfer ; Mechanical Engineering ; Mechanical properties ; Projectiles ; Shear strength ; Technical Paper</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022-11, Vol.44 (11), Article 571</ispartof><rights>The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-d43ada151138e2899021db561d571016292e57a45198a02f9f7c72df2bc0f6923</cites><orcidid>0000-0003-1687-0097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Haghbin, Amin</creatorcontrib><creatorcontrib>Naderi, Aliasghar</creatorcontrib><creatorcontrib>Mokhtari, S. Abolfazl</creatorcontrib><title>Experimental study on interlaminar strength &amp; high velocity impact response of carbon nanotube deposited glass fiber composites</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP’s interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% &amp; 20% regarding simple control GFRPs and 35% &amp; 16% regarding conventional specimen, respectively.</description><subject>Ballistic impact tests</subject><subject>Carbon nanotubes</subject><subject>Electrophoretic deposition</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Fiber composites</subject><subject>Fiber reinforced polymers</subject><subject>Glass fiber reinforced plastics</subject><subject>Impact response</subject><subject>Interfacial shear strength</subject><subject>Load transfer</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Projectiles</subject><subject>Shear strength</subject><subject>Technical Paper</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AU8BwVt1kjRNepRl_YAFL3oOaTvd7dJNapIV9-RfN1rBm6cZhud9B54su6RwQwHkbSig4JADYzlwpWgujrIZVVDmvKzocdpLqXKhpDrNzkLYAnAmSjHLPpcfI_p-hzaagYS4bw_EWdLbiH4wu94an64e7TpuyDXZ9OsNecfBNX08kH43miYSj2F0NiBxHWmMr1PeGuvivkbS4uhCH7El68GEQLq-Rk8at5vO4Tw76cwQ8OJ3zrPX--XL4jFfPT88Le5WecMAYt4W3LSGCkq5QqaqChhta1HSVkgKtGQVQyFNIWilDLCu6mQjWduxuoGurBifZ1dT7-jd2x5D1Fu39za91ExyKssiuUsUm6jGuxA8dnpMbow_aAr6W7SeROsE6x_RWqQQn0IhwXaN_q_6n9QXNAKChw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Haghbin, Amin</creator><creator>Naderi, Aliasghar</creator><creator>Mokhtari, S. Abolfazl</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1687-0097</orcidid></search><sort><creationdate>20221101</creationdate><title>Experimental study on interlaminar strength &amp; high velocity impact response of carbon nanotube deposited glass fiber composites</title><author>Haghbin, Amin ; Naderi, Aliasghar ; Mokhtari, S. Abolfazl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-d43ada151138e2899021db561d571016292e57a45198a02f9f7c72df2bc0f6923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ballistic impact tests</topic><topic>Carbon nanotubes</topic><topic>Electrophoretic deposition</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Fiber composites</topic><topic>Fiber reinforced polymers</topic><topic>Glass fiber reinforced plastics</topic><topic>Impact response</topic><topic>Interfacial shear strength</topic><topic>Load transfer</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Projectiles</topic><topic>Shear strength</topic><topic>Technical Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Haghbin, Amin</creatorcontrib><creatorcontrib>Naderi, Aliasghar</creatorcontrib><creatorcontrib>Mokhtari, S. Abolfazl</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haghbin, Amin</au><au>Naderi, Aliasghar</au><au>Mokhtari, S. Abolfazl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental study on interlaminar strength &amp; high velocity impact response of carbon nanotube deposited glass fiber composites</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>44</volume><issue>11</issue><artnum>571</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP’s interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% &amp; 20% regarding simple control GFRPs and 35% &amp; 16% regarding conventional specimen, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-022-03881-5</doi><orcidid>https://orcid.org/0000-0003-1687-0097</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1678-5878
ispartof Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022-11, Vol.44 (11), Article 571
issn 1678-5878
1806-3691
language eng
recordid cdi_proquest_journals_2731764022
source Springer Link
subjects Ballistic impact tests
Carbon nanotubes
Electrophoretic deposition
Energy absorption
Engineering
Fiber composites
Fiber reinforced polymers
Glass fiber reinforced plastics
Impact response
Interfacial shear strength
Load transfer
Mechanical Engineering
Mechanical properties
Projectiles
Shear strength
Technical Paper
title Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20study%20on%20interlaminar%20strength%20&%20high%20velocity%20impact%20response%20of%20carbon%20nanotube%20deposited%20glass%20fiber%20composites&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Haghbin,%20Amin&rft.date=2022-11-01&rft.volume=44&rft.issue=11&rft.artnum=571&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-022-03881-5&rft_dat=%3Cproquest_cross%3E2731764022%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c200t-d43ada151138e2899021db561d571016292e57a45198a02f9f7c72df2bc0f6923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731764022&rft_id=info:pmid/&rfr_iscdi=true