Loading…
Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water
Hydrogen is an important building block in global strategies towards a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in t...
Saved in:
Published in: | arXiv.org 2022-10 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Binder, Johannes Dąbrowska, Aleksandra Krystyna Tokarczyk, Mateusz Ludwiczak, Katarzyna Bożek, Rafał Kowalski, Grzegorz Stępniewski, Roman Wysmołek, Andrzej |
description | Hydrogen is an important building block in global strategies towards a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it was demonstrated that micrometer-sized exfoliated flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work we show that electron beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage, but also holds promise for the development of unconventional hydrogen production schemes. |
doi_str_mv | 10.48550/arxiv.2211.01953 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2731911933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2731911933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-446a280ca9e3cb26aae20dd938ce3937ca7e55dd05c319a7a2a828ce8c2ce5cf3</originalsourceid><addsrcrecordid>eNotT01rwzAUM4PBStcfsJth52T2e3E-jqN0H1DYpcdBebGd1iXEnZ1uyb-fx3oQEggJibEHKfKiVko8UZjcdw4gZS5ko_CGLQBRZnUBcMdWMZ6EEFBWoBQu2Ofm7EaaHPX8aCc6-CGp1gc_8MGNwRnLOx_4cTbBH-zAE2yg0SW_nXkg43w_Rxe577gbRhs60n9lP5T0PbvtqI92deUl271sduu3bPvx-r5-3maU9mVFURLUQlNjUbdQElkQxjRYa4sNVpoqq5QxQmmUDVUEVEPyag3aKt3hkj3-156D_7rYOO5P_hLSkbiHKkWkbBDxF3SKVsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2731911933</pqid></control><display><type>article</type><title>Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water</title><source>Publicly Available Content Database</source><creator>Binder, Johannes ; Dąbrowska, Aleksandra Krystyna ; Tokarczyk, Mateusz ; Ludwiczak, Katarzyna ; Bożek, Rafał ; Kowalski, Grzegorz ; Stępniewski, Roman ; Wysmołek, Andrzej</creator><creatorcontrib>Binder, Johannes ; Dąbrowska, Aleksandra Krystyna ; Tokarczyk, Mateusz ; Ludwiczak, Katarzyna ; Bożek, Rafał ; Kowalski, Grzegorz ; Stępniewski, Roman ; Wysmołek, Andrzej</creatorcontrib><description>Hydrogen is an important building block in global strategies towards a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it was demonstrated that micrometer-sized exfoliated flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work we show that electron beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage, but also holds promise for the development of unconventional hydrogen production schemes.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2211.01953</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boron nitride ; Clean energy ; Deformation effects ; Electron beams ; Hydrogen ; Hydrogen production ; Hydrogen storage ; Materials science ; Radiolysis</subject><ispartof>arXiv.org, 2022-10</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2731911933?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Binder, Johannes</creatorcontrib><creatorcontrib>Dąbrowska, Aleksandra Krystyna</creatorcontrib><creatorcontrib>Tokarczyk, Mateusz</creatorcontrib><creatorcontrib>Ludwiczak, Katarzyna</creatorcontrib><creatorcontrib>Bożek, Rafał</creatorcontrib><creatorcontrib>Kowalski, Grzegorz</creatorcontrib><creatorcontrib>Stępniewski, Roman</creatorcontrib><creatorcontrib>Wysmołek, Andrzej</creatorcontrib><title>Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water</title><title>arXiv.org</title><description>Hydrogen is an important building block in global strategies towards a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it was demonstrated that micrometer-sized exfoliated flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work we show that electron beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage, but also holds promise for the development of unconventional hydrogen production schemes.</description><subject>Boron nitride</subject><subject>Clean energy</subject><subject>Deformation effects</subject><subject>Electron beams</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen storage</subject><subject>Materials science</subject><subject>Radiolysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotT01rwzAUM4PBStcfsJth52T2e3E-jqN0H1DYpcdBebGd1iXEnZ1uyb-fx3oQEggJibEHKfKiVko8UZjcdw4gZS5ko_CGLQBRZnUBcMdWMZ6EEFBWoBQu2Ofm7EaaHPX8aCc6-CGp1gc_8MGNwRnLOx_4cTbBH-zAE2yg0SW_nXkg43w_Rxe577gbRhs60n9lP5T0PbvtqI92deUl271sduu3bPvx-r5-3maU9mVFURLUQlNjUbdQElkQxjRYa4sNVpoqq5QxQmmUDVUEVEPyag3aKt3hkj3-156D_7rYOO5P_hLSkbiHKkWkbBDxF3SKVsw</recordid><startdate>20221023</startdate><enddate>20221023</enddate><creator>Binder, Johannes</creator><creator>Dąbrowska, Aleksandra Krystyna</creator><creator>Tokarczyk, Mateusz</creator><creator>Ludwiczak, Katarzyna</creator><creator>Bożek, Rafał</creator><creator>Kowalski, Grzegorz</creator><creator>Stępniewski, Roman</creator><creator>Wysmołek, Andrzej</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221023</creationdate><title>Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water</title><author>Binder, Johannes ; Dąbrowska, Aleksandra Krystyna ; Tokarczyk, Mateusz ; Ludwiczak, Katarzyna ; Bożek, Rafał ; Kowalski, Grzegorz ; Stępniewski, Roman ; Wysmołek, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-446a280ca9e3cb26aae20dd938ce3937ca7e55dd05c319a7a2a828ce8c2ce5cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boron nitride</topic><topic>Clean energy</topic><topic>Deformation effects</topic><topic>Electron beams</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen storage</topic><topic>Materials science</topic><topic>Radiolysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Binder, Johannes</creatorcontrib><creatorcontrib>Dąbrowska, Aleksandra Krystyna</creatorcontrib><creatorcontrib>Tokarczyk, Mateusz</creatorcontrib><creatorcontrib>Ludwiczak, Katarzyna</creatorcontrib><creatorcontrib>Bożek, Rafał</creatorcontrib><creatorcontrib>Kowalski, Grzegorz</creatorcontrib><creatorcontrib>Stępniewski, Roman</creatorcontrib><creatorcontrib>Wysmołek, Andrzej</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binder, Johannes</au><au>Dąbrowska, Aleksandra Krystyna</au><au>Tokarczyk, Mateusz</au><au>Ludwiczak, Katarzyna</au><au>Bożek, Rafał</au><au>Kowalski, Grzegorz</au><au>Stępniewski, Roman</au><au>Wysmołek, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water</atitle><jtitle>arXiv.org</jtitle><date>2022-10-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Hydrogen is an important building block in global strategies towards a future green energy system. To make this transition possible, intense scientific efforts are needed, also in the field of materials science. Two-dimensional crystals, such as hexagonal boron nitride (hBN), are very promising in this regard, as it was demonstrated that micrometer-sized exfoliated flakes are excellent barriers to molecular hydrogen. However, it remains an open question whether large-area layers fabricated by industrially relevant methods preserve such promising properties. In this work we show that electron beam-induced splitting of water creates hBN bubbles that effectively store molecular hydrogen for weeks and under extreme mechanical deformation. We demonstrate that epitaxial hBN allows direct visualization and monitoring of the process of hydrogen generation by radiolysis of interfacial water. Our findings show that hBN is not only a potential candidate for hydrogen storage, but also holds promise for the development of unconventional hydrogen production schemes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2211.01953</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2731911933 |
source | Publicly Available Content Database |
subjects | Boron nitride Clean energy Deformation effects Electron beams Hydrogen Hydrogen production Hydrogen storage Materials science Radiolysis |
title | Epitaxial hexagonal boron nitride for hydrogen generation by radiolysis of interfacial water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A56%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20hexagonal%20boron%20nitride%20for%20hydrogen%20generation%20by%20radiolysis%20of%20interfacial%20water&rft.jtitle=arXiv.org&rft.au=Binder,%20Johannes&rft.date=2022-10-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2211.01953&rft_dat=%3Cproquest%3E2731911933%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-446a280ca9e3cb26aae20dd938ce3937ca7e55dd05c319a7a2a828ce8c2ce5cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2731911933&rft_id=info:pmid/&rfr_iscdi=true |