Loading…
Enhanced chemical durability of polymer electrolyte membrane fuel cells by crown ether grafted carbon nanotube
Low chemical stability of membrane-electrode assembly (MEA) remains a major obstacle to commercialization of polymer electrolyte membrane fuel cells (PEMFCs) for fuel cell electric vehicles (FCEVs). In this study, we doubly anchored cerium-ion in the catalyst layer by forming a complex with the 15-c...
Saved in:
Published in: | Journal of alloys and compounds 2022-12, Vol.928, p.167227, Article 167227 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low chemical stability of membrane-electrode assembly (MEA) remains a major obstacle to commercialization of polymer electrolyte membrane fuel cells (PEMFCs) for fuel cell electric vehicles (FCEVs). In this study, we doubly anchored cerium-ion in the catalyst layer by forming a complex with the 15-crown-5-ether and additionally grafting to the multiwall carbon nanotube (Ce/CRE-graft-CNT) as a long-lasting radical scavenger. To confirm the effect of Ce/CRE-graft-CNT on chemical durability, the binding energy between the cerium-ion and crown ether was identified with DFT calculations. The incorporation of Ce/CRE-graft-CNT into catalyst layer decreases decay rate of open circuit voltage (OCV) by 4 times from 2.13 to 0.56 mV h−1 for 210 h operation. The performance retention of the Ce/CRE-graft-CNT (70.8 %) at 0.6 V is also higher than that of the Ce/CRE-blend-CNT (44.8 %). The results indicate that the doubly anchored Ce/CRE-graft-CNT has a more retention capability as a radical scavenger. Therefore, a tightly bounded cerium-ion/crown ether complex with CNT can provide a strategy to improve the chemical durability of MEAs.
•The cerium-ion/crown ether complex is grafted to the multiwall carbon nanotube.•The binding energy among the Ce, CRE, and CNT is calculated from DFT method.•The chemical durability is improved by the Ce/CRE-graft-CNTs as a radical scavenger. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.167227 |