Loading…
Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance
NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectro...
Saved in:
Published in: | Rare metals 2022-12, Vol.41 (12), p.4257-4265 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13 |
container_end_page | 4265 |
container_issue | 12 |
container_start_page | 4257 |
container_title | Rare metals |
container_volume | 41 |
creator | Zhang, Chun-Hua Wu, Chen-Liang Zhang, Song Jia, Yong-Feng Guan, Meng Tan, Jun-Zhe Lin, Bin |
description | NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr
7
C
3
and Cr
23
C
6
) and Ni
3
B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm
−2
, respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate. |
doi_str_mv | 10.1007/s12598-016-0814-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733387479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733387479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0ZlNNkmPWvyCqgf1KCFNsnVL3dRkFfz3ZtmCJ08zw_uYxyPkFOEcAdRFxqqeaQYoGWgUTOyRCWqpmEJd75cdABnUFR6So5zXAEJICRPytrA5JOo21vu2W9HY0Md2np7bKxo7-hC7sKECgPaRhu7ddi5QZ7_b3vZtwUOKeZi289TFtLtSyG3uB-4xOWjsJoeT3ZyS15vrl_kdWzzd3s8vF8xxlD3j1nHQXM2qKpS8jnMum6C59YDKaR8qDkFZZ7HgotZcWrROLr3wHmCJfErORt9tip9fIfdmHb9SV16aShU3rYSaFRaOLFeC5hQas03th00_BsEMLZqxRVNaNEOLRhRNNWpy4XarkP6c_xf9AisSc_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733387479</pqid></control><display><type>article</type><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><source>Springer Link</source><creator>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</creator><creatorcontrib>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</creatorcontrib><description>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr
7
C
3
and Cr
23
C
6
) and Ni
3
B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm
−2
, respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-016-0814-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Cavitation ; Cavitation erosion ; Chemical composition ; Chemistry and Materials Science ; Chromium carbide ; Corrosion currents ; Corrosion resistance ; Corrosion tests ; Current density ; Dendritic structure ; Electrochemical corrosion ; Energy ; Erosion resistance ; Flakes (defects) ; Fluence ; Laser beam cladding ; Lasers ; Materials Engineering ; Materials Science ; Metallic Materials ; Microhardness ; Microstructure ; Monel (trademark) ; Nanoscale Science and Technology ; Nickel base alloys ; Physical Chemistry ; Solid solutions ; Substrates ; Thickness</subject><ispartof>Rare metals, 2022-12, Vol.41 (12), p.4257-4265</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</citedby><cites>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</cites><orcidid>0000-0002-8208-0993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Chun-Hua</creatorcontrib><creatorcontrib>Wu, Chen-Liang</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Jia, Yong-Feng</creatorcontrib><creatorcontrib>Guan, Meng</creatorcontrib><creatorcontrib>Tan, Jun-Zhe</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr
7
C
3
and Cr
23
C
6
) and Ni
3
B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm
−2
, respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</description><subject>Biomaterials</subject><subject>Cavitation</subject><subject>Cavitation erosion</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Chromium carbide</subject><subject>Corrosion currents</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Current density</subject><subject>Dendritic structure</subject><subject>Electrochemical corrosion</subject><subject>Energy</subject><subject>Erosion resistance</subject><subject>Flakes (defects)</subject><subject>Fluence</subject><subject>Laser beam cladding</subject><subject>Lasers</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Monel (trademark)</subject><subject>Nanoscale Science and Technology</subject><subject>Nickel base alloys</subject><subject>Physical Chemistry</subject><subject>Solid solutions</subject><subject>Substrates</subject><subject>Thickness</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0ZlNNkmPWvyCqgf1KCFNsnVL3dRkFfz3ZtmCJ08zw_uYxyPkFOEcAdRFxqqeaQYoGWgUTOyRCWqpmEJd75cdABnUFR6So5zXAEJICRPytrA5JOo21vu2W9HY0Md2np7bKxo7-hC7sKECgPaRhu7ddi5QZ7_b3vZtwUOKeZi289TFtLtSyG3uB-4xOWjsJoeT3ZyS15vrl_kdWzzd3s8vF8xxlD3j1nHQXM2qKpS8jnMum6C59YDKaR8qDkFZZ7HgotZcWrROLr3wHmCJfErORt9tip9fIfdmHb9SV16aShU3rYSaFRaOLFeC5hQas03th00_BsEMLZqxRVNaNEOLRhRNNWpy4XarkP6c_xf9AisSc_Y</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Chun-Hua</creator><creator>Wu, Chen-Liang</creator><creator>Zhang, Song</creator><creator>Jia, Yong-Feng</creator><creator>Guan, Meng</creator><creator>Tan, Jun-Zhe</creator><creator>Lin, Bin</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8208-0993</orcidid></search><sort><creationdate>20221201</creationdate><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><author>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Cavitation</topic><topic>Cavitation erosion</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Chromium carbide</topic><topic>Corrosion currents</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Current density</topic><topic>Dendritic structure</topic><topic>Electrochemical corrosion</topic><topic>Energy</topic><topic>Erosion resistance</topic><topic>Flakes (defects)</topic><topic>Fluence</topic><topic>Laser beam cladding</topic><topic>Lasers</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Monel (trademark)</topic><topic>Nanoscale Science and Technology</topic><topic>Nickel base alloys</topic><topic>Physical Chemistry</topic><topic>Solid solutions</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chun-Hua</creatorcontrib><creatorcontrib>Wu, Chen-Liang</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Jia, Yong-Feng</creatorcontrib><creatorcontrib>Guan, Meng</creatorcontrib><creatorcontrib>Tan, Jun-Zhe</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chun-Hua</au><au>Wu, Chen-Liang</au><au>Zhang, Song</au><au>Jia, Yong-Feng</au><au>Guan, Meng</au><au>Tan, Jun-Zhe</au><au>Lin, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>4257</spage><epage>4265</epage><pages>4257-4265</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr
7
C
3
and Cr
23
C
6
) and Ni
3
B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm
−2
, respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-016-0814-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8208-0993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2022-12, Vol.41 (12), p.4257-4265 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2733387479 |
source | Springer Link |
subjects | Biomaterials Cavitation Cavitation erosion Chemical composition Chemistry and Materials Science Chromium carbide Corrosion currents Corrosion resistance Corrosion tests Current density Dendritic structure Electrochemical corrosion Energy Erosion resistance Flakes (defects) Fluence Laser beam cladding Lasers Materials Engineering Materials Science Metallic Materials Microhardness Microstructure Monel (trademark) Nanoscale Science and Technology Nickel base alloys Physical Chemistry Solid solutions Substrates Thickness |
title | Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20cladding%20of%20NiCrSiB%20on%20Monel%20400%20to%20enhance%20cavitation%20erosion%20and%20corrosion%20resistance&rft.jtitle=Rare%20metals&rft.au=Zhang,%20Chun-Hua&rft.date=2022-12-01&rft.volume=41&rft.issue=12&rft.spage=4257&rft.epage=4265&rft.pages=4257-4265&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-016-0814-4&rft_dat=%3Cproquest_cross%3E2733387479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733387479&rft_id=info:pmid/&rfr_iscdi=true |