Loading…

Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance

NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectro...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2022-12, Vol.41 (12), p.4257-4265
Main Authors: Zhang, Chun-Hua, Wu, Chen-Liang, Zhang, Song, Jia, Yong-Feng, Guan, Meng, Tan, Jun-Zhe, Lin, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13
cites cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13
container_end_page 4265
container_issue 12
container_start_page 4257
container_title Rare metals
container_volume 41
creator Zhang, Chun-Hua
Wu, Chen-Liang
Zhang, Song
Jia, Yong-Feng
Guan, Meng
Tan, Jun-Zhe
Lin, Bin
description NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr 7 C 3 and Cr 23 C 6 ) and Ni 3 B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm −2 , respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.
doi_str_mv 10.1007/s12598-016-0814-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733387479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733387479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHP0ZlNNkmPWvyCqgf1KCFNsnVL3dRkFfz3ZtmCJ08zw_uYxyPkFOEcAdRFxqqeaQYoGWgUTOyRCWqpmEJd75cdABnUFR6So5zXAEJICRPytrA5JOo21vu2W9HY0Md2np7bKxo7-hC7sKECgPaRhu7ddi5QZ7_b3vZtwUOKeZi289TFtLtSyG3uB-4xOWjsJoeT3ZyS15vrl_kdWzzd3s8vF8xxlD3j1nHQXM2qKpS8jnMum6C59YDKaR8qDkFZZ7HgotZcWrROLr3wHmCJfErORt9tip9fIfdmHb9SV16aShU3rYSaFRaOLFeC5hQas03th00_BsEMLZqxRVNaNEOLRhRNNWpy4XarkP6c_xf9AisSc_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733387479</pqid></control><display><type>article</type><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><source>Springer Link</source><creator>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</creator><creatorcontrib>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</creatorcontrib><description>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr 7 C 3 and Cr 23 C 6 ) and Ni 3 B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm −2 , respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-016-0814-4</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Cavitation ; Cavitation erosion ; Chemical composition ; Chemistry and Materials Science ; Chromium carbide ; Corrosion currents ; Corrosion resistance ; Corrosion tests ; Current density ; Dendritic structure ; Electrochemical corrosion ; Energy ; Erosion resistance ; Flakes (defects) ; Fluence ; Laser beam cladding ; Lasers ; Materials Engineering ; Materials Science ; Metallic Materials ; Microhardness ; Microstructure ; Monel (trademark) ; Nanoscale Science and Technology ; Nickel base alloys ; Physical Chemistry ; Solid solutions ; Substrates ; Thickness</subject><ispartof>Rare metals, 2022-12, Vol.41 (12), p.4257-4265</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016</rights><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</citedby><cites>FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</cites><orcidid>0000-0002-8208-0993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Chun-Hua</creatorcontrib><creatorcontrib>Wu, Chen-Liang</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Jia, Yong-Feng</creatorcontrib><creatorcontrib>Guan, Meng</creatorcontrib><creatorcontrib>Tan, Jun-Zhe</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr 7 C 3 and Cr 23 C 6 ) and Ni 3 B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm −2 , respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</description><subject>Biomaterials</subject><subject>Cavitation</subject><subject>Cavitation erosion</subject><subject>Chemical composition</subject><subject>Chemistry and Materials Science</subject><subject>Chromium carbide</subject><subject>Corrosion currents</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Current density</subject><subject>Dendritic structure</subject><subject>Electrochemical corrosion</subject><subject>Energy</subject><subject>Erosion resistance</subject><subject>Flakes (defects)</subject><subject>Fluence</subject><subject>Laser beam cladding</subject><subject>Lasers</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Monel (trademark)</subject><subject>Nanoscale Science and Technology</subject><subject>Nickel base alloys</subject><subject>Physical Chemistry</subject><subject>Solid solutions</subject><subject>Substrates</subject><subject>Thickness</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHP0ZlNNkmPWvyCqgf1KCFNsnVL3dRkFfz3ZtmCJ08zw_uYxyPkFOEcAdRFxqqeaQYoGWgUTOyRCWqpmEJd75cdABnUFR6So5zXAEJICRPytrA5JOo21vu2W9HY0Md2np7bKxo7-hC7sKECgPaRhu7ddi5QZ7_b3vZtwUOKeZi289TFtLtSyG3uB-4xOWjsJoeT3ZyS15vrl_kdWzzd3s8vF8xxlD3j1nHQXM2qKpS8jnMum6C59YDKaR8qDkFZZ7HgotZcWrROLr3wHmCJfErORt9tip9fIfdmHb9SV16aShU3rYSaFRaOLFeC5hQas03th00_BsEMLZqxRVNaNEOLRhRNNWpy4XarkP6c_xf9AisSc_Y</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Chun-Hua</creator><creator>Wu, Chen-Liang</creator><creator>Zhang, Song</creator><creator>Jia, Yong-Feng</creator><creator>Guan, Meng</creator><creator>Tan, Jun-Zhe</creator><creator>Lin, Bin</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8208-0993</orcidid></search><sort><creationdate>20221201</creationdate><title>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</title><author>Zhang, Chun-Hua ; Wu, Chen-Liang ; Zhang, Song ; Jia, Yong-Feng ; Guan, Meng ; Tan, Jun-Zhe ; Lin, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomaterials</topic><topic>Cavitation</topic><topic>Cavitation erosion</topic><topic>Chemical composition</topic><topic>Chemistry and Materials Science</topic><topic>Chromium carbide</topic><topic>Corrosion currents</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Current density</topic><topic>Dendritic structure</topic><topic>Electrochemical corrosion</topic><topic>Energy</topic><topic>Erosion resistance</topic><topic>Flakes (defects)</topic><topic>Fluence</topic><topic>Laser beam cladding</topic><topic>Lasers</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Monel (trademark)</topic><topic>Nanoscale Science and Technology</topic><topic>Nickel base alloys</topic><topic>Physical Chemistry</topic><topic>Solid solutions</topic><topic>Substrates</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chun-Hua</creatorcontrib><creatorcontrib>Wu, Chen-Liang</creatorcontrib><creatorcontrib>Zhang, Song</creatorcontrib><creatorcontrib>Jia, Yong-Feng</creatorcontrib><creatorcontrib>Guan, Meng</creatorcontrib><creatorcontrib>Tan, Jun-Zhe</creatorcontrib><creatorcontrib>Lin, Bin</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chun-Hua</au><au>Wu, Chen-Liang</au><au>Zhang, Song</au><au>Jia, Yong-Feng</au><au>Guan, Meng</au><au>Tan, Jun-Zhe</au><au>Lin, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>4257</spage><epage>4265</epage><pages>4257-4265</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>NiCrSiB modified layer was synthesized on Monel 400 by laser cladding, aiming at improving cavitation erosion and corrosion resistance. The microstructure, chemical composition, phase constituents and microhardness were investigated using scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), X-ray diffractometry (XRD) and microhardness tester. The cavitation erosion and corrosion behaviors of the modified layer were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement, respectively. Experimental results show that by varying the laser fluence, a hard NiCrSiB modified layer with little airholes, cracks or other defects could be obtained. NiCrSiB modified layer is ~1.1 mm in thickness. The microstructure of the modified layer exhibits cellular dendrite, flake-like dendrite and multiple eutectic phase. The modified layer is mainly composed of γ-Ni solid solution, chromium carbide (Cr 7 C 3 and Cr 23 C 6 ) and Ni 3 B. The microhardness of the modified layer is ~6.8 times that of Monel 400 substrate. Both the cavitation erosion and corrosion resistance of the modified layer are improved. In the cavitation erosion test, the cumulative erosion loss and erosion loss rate of the modified layer are one order of magnitude lower than that of the substrate. In the electrochemical corrosion test, the corrosion potentials of the substrate and the modified layer are similar. The corrosion current densities of the substrate and the modified layer are 11.12 and 1.95 μA·cm −2 , respectively. By comparing their corrosion current densities, the corrosion resistance of the modified layer is about 5.7 times that of the substrate.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-016-0814-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8208-0993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2022-12, Vol.41 (12), p.4257-4265
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2733387479
source Springer Link
subjects Biomaterials
Cavitation
Cavitation erosion
Chemical composition
Chemistry and Materials Science
Chromium carbide
Corrosion currents
Corrosion resistance
Corrosion tests
Current density
Dendritic structure
Electrochemical corrosion
Energy
Erosion resistance
Flakes (defects)
Fluence
Laser beam cladding
Lasers
Materials Engineering
Materials Science
Metallic Materials
Microhardness
Microstructure
Monel (trademark)
Nanoscale Science and Technology
Nickel base alloys
Physical Chemistry
Solid solutions
Substrates
Thickness
title Laser cladding of NiCrSiB on Monel 400 to enhance cavitation erosion and corrosion resistance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A23%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20cladding%20of%20NiCrSiB%20on%20Monel%20400%20to%20enhance%20cavitation%20erosion%20and%20corrosion%20resistance&rft.jtitle=Rare%20metals&rft.au=Zhang,%20Chun-Hua&rft.date=2022-12-01&rft.volume=41&rft.issue=12&rft.spage=4257&rft.epage=4265&rft.pages=4257-4265&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-016-0814-4&rft_dat=%3Cproquest_cross%3E2733387479%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3ac30837922e718c3336fe83ad017c8de230e7aca12e745836a1ac6bd4dd00b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733387479&rft_id=info:pmid/&rfr_iscdi=true