Loading…

Handling Iterations in Distributed Dataflow Systems

Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no...

Full description

Saved in:
Bibliographic Details
Published in:ACM computing surveys 2022-12, Vol.54 (9), p.1-38
Main Authors: Gévay, Gábor E., Soto, Juan, Markl, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663
cites cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663
container_end_page 38
container_issue 9
container_start_page 1
container_title ACM computing surveys
container_volume 54
creator Gévay, Gábor E.
Soto, Juan
Markl, Volker
description Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.
doi_str_mv 10.1145/3477602
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733413654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733413654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoOFbxFQZcuBr9ki8_dimt2kLBhboOmfxIynSmJhmkb-9Iu7qbw7lwCLml8EApF4_IlZLAzkhFhVCNQk7PSQUooQEEuCRXOW8BgHEqK4Ir07su9t_1uvhkShz6XMe-XsZcUmzH4l29NMWEbvitPw65-F2-JhfBdNnfnHZGvl5fPherZvP-tl48bxrLBJbGGsWlhTDHJ-udU4gGAzdUsDC3gTkM3iC4YINqBbTSByfAupZJwz1IiTNyd_Tu0_Az-lz0dhhTP11qNtk4RSn4RN0fKZuGnJMPep_izqSDpqD_i-hTEfwDkklSVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733413654</pqid></control><display><type>article</type><title>Handling Iterations in Distributed Dataflow Systems</title><source>EBSCOhost Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</creator><creatorcontrib>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</creatorcontrib><description>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3477602</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Computer science ; Iterative algorithms ; Iterative methods ; Literature reviews ; Programming</subject><ispartof>ACM computing surveys, 2022-12, Vol.54 (9), p.1-38</ispartof><rights>Copyright Association for Computing Machinery Dec 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</citedby><cites>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gévay, Gábor E.</creatorcontrib><creatorcontrib>Soto, Juan</creatorcontrib><creatorcontrib>Markl, Volker</creatorcontrib><title>Handling Iterations in Distributed Dataflow Systems</title><title>ACM computing surveys</title><description>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</description><subject>Computer science</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Literature reviews</subject><subject>Programming</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoOFbxFQZcuBr9ki8_dimt2kLBhboOmfxIynSmJhmkb-9Iu7qbw7lwCLml8EApF4_IlZLAzkhFhVCNQk7PSQUooQEEuCRXOW8BgHEqK4Ir07su9t_1uvhkShz6XMe-XsZcUmzH4l29NMWEbvitPw65-F2-JhfBdNnfnHZGvl5fPherZvP-tl48bxrLBJbGGsWlhTDHJ-udU4gGAzdUsDC3gTkM3iC4YINqBbTSByfAupZJwz1IiTNyd_Tu0_Az-lz0dhhTP11qNtk4RSn4RN0fKZuGnJMPep_izqSDpqD_i-hTEfwDkklSVw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Gévay, Gábor E.</creator><creator>Soto, Juan</creator><creator>Markl, Volker</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20221201</creationdate><title>Handling Iterations in Distributed Dataflow Systems</title><author>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer science</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Literature reviews</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gévay, Gábor E.</creatorcontrib><creatorcontrib>Soto, Juan</creatorcontrib><creatorcontrib>Markl, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gévay, Gábor E.</au><au>Soto, Juan</au><au>Markl, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling Iterations in Distributed Dataflow Systems</atitle><jtitle>ACM computing surveys</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3477602</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2022-12, Vol.54 (9), p.1-38
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_2733413654
source EBSCOhost Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Computer science
Iterative algorithms
Iterative methods
Literature reviews
Programming
title Handling Iterations in Distributed Dataflow Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20Iterations%20in%20Distributed%20Dataflow%20Systems&rft.jtitle=ACM%20computing%20surveys&rft.au=G%C3%A9vay,%20G%C3%A1bor%20E.&rft.date=2022-12-01&rft.volume=54&rft.issue=9&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3477602&rft_dat=%3Cproquest_cross%3E2733413654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733413654&rft_id=info:pmid/&rfr_iscdi=true