Loading…
Handling Iterations in Distributed Dataflow Systems
Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no...
Saved in:
Published in: | ACM computing surveys 2022-12, Vol.54 (9), p.1-38 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663 |
---|---|
cites | cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663 |
container_end_page | 38 |
container_issue | 9 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 54 |
creator | Gévay, Gábor E. Soto, Juan Markl, Volker |
description | Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS. |
doi_str_mv | 10.1145/3477602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733413654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733413654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoOFbxFQZcuBr9ki8_dimt2kLBhboOmfxIynSmJhmkb-9Iu7qbw7lwCLml8EApF4_IlZLAzkhFhVCNQk7PSQUooQEEuCRXOW8BgHEqK4Ir07su9t_1uvhkShz6XMe-XsZcUmzH4l29NMWEbvitPw65-F2-JhfBdNnfnHZGvl5fPherZvP-tl48bxrLBJbGGsWlhTDHJ-udU4gGAzdUsDC3gTkM3iC4YINqBbTSByfAupZJwz1IiTNyd_Tu0_Az-lz0dhhTP11qNtk4RSn4RN0fKZuGnJMPep_izqSDpqD_i-hTEfwDkklSVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733413654</pqid></control><display><type>article</type><title>Handling Iterations in Distributed Dataflow Systems</title><source>EBSCOhost Business Source Ultimate</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</creator><creatorcontrib>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</creatorcontrib><description>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3477602</identifier><language>eng</language><publisher>Baltimore: Association for Computing Machinery</publisher><subject>Computer science ; Iterative algorithms ; Iterative methods ; Literature reviews ; Programming</subject><ispartof>ACM computing surveys, 2022-12, Vol.54 (9), p.1-38</ispartof><rights>Copyright Association for Computing Machinery Dec 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</citedby><cites>FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gévay, Gábor E.</creatorcontrib><creatorcontrib>Soto, Juan</creatorcontrib><creatorcontrib>Markl, Volker</creatorcontrib><title>Handling Iterations in Distributed Dataflow Systems</title><title>ACM computing surveys</title><description>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</description><subject>Computer science</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Literature reviews</subject><subject>Programming</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoOFbxFQZcuBr9ki8_dimt2kLBhboOmfxIynSmJhmkb-9Iu7qbw7lwCLml8EApF4_IlZLAzkhFhVCNQk7PSQUooQEEuCRXOW8BgHEqK4Ir07su9t_1uvhkShz6XMe-XsZcUmzH4l29NMWEbvitPw65-F2-JhfBdNnfnHZGvl5fPherZvP-tl48bxrLBJbGGsWlhTDHJ-udU4gGAzdUsDC3gTkM3iC4YINqBbTSByfAupZJwz1IiTNyd_Tu0_Az-lz0dhhTP11qNtk4RSn4RN0fKZuGnJMPep_izqSDpqD_i-hTEfwDkklSVw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Gévay, Gábor E.</creator><creator>Soto, Juan</creator><creator>Markl, Volker</creator><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20221201</creationdate><title>Handling Iterations in Distributed Dataflow Systems</title><author>Gévay, Gábor E. ; Soto, Juan ; Markl, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer science</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Literature reviews</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gévay, Gábor E.</creatorcontrib><creatorcontrib>Soto, Juan</creatorcontrib><creatorcontrib>Markl, Volker</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gévay, Gábor E.</au><au>Soto, Juan</au><au>Markl, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Handling Iterations in Distributed Dataflow Systems</atitle><jtitle>ACM computing surveys</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>54</volume><issue>9</issue><spage>1</spage><epage>38</epage><pages>1-38</pages><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Over the past decade, distributed dataflow systems (DDS) have become a standard technology. In these systems, users write programs in restricted dataflow programming models, such as MapReduce, which enable them to scale out program execution to a shared-nothing cluster of machines. Yet, there is no established consensus that prescribes how to extend these programming models to support iterative algorithms. In this survey, we review the research literature and identify how DDS handle control flow, such as iteration, from both the programming model and execution level perspectives. This survey will be of interest for both users and designers of DDS.</abstract><cop>Baltimore</cop><pub>Association for Computing Machinery</pub><doi>10.1145/3477602</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2022-12, Vol.54 (9), p.1-38 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2733413654 |
source | EBSCOhost Business Source Ultimate; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Computer science Iterative algorithms Iterative methods Literature reviews Programming |
title | Handling Iterations in Distributed Dataflow Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Handling%20Iterations%20in%20Distributed%20Dataflow%20Systems&rft.jtitle=ACM%20computing%20surveys&rft.au=G%C3%A9vay,%20G%C3%A1bor%20E.&rft.date=2022-12-01&rft.volume=54&rft.issue=9&rft.spage=1&rft.epage=38&rft.pages=1-38&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3477602&rft_dat=%3Cproquest_cross%3E2733413654%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c253t-ca746c0f938cedd733a3f4a152f9cf2d3fea30dfcf7b50b6efd50cdb26a4e0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733413654&rft_id=info:pmid/&rfr_iscdi=true |