Loading…
A continuous approach to Floquet theory for pulse-sequence optimization in solid-state NMR
We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experim...
Saved in:
Published in: | The Journal of chemical physics 2022-11, Vol.157 (18), p.184103-184103 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a framework that uses a continuous frequency space to describe and design solid-state nuclear magnetic resonance (NMR) experiments. The approach is similar to the well-established Floquet treatment for NMR, but it is not restricted to periodic Hamiltonians and allows the design of experiments in a reverse fashion. The framework is based on perturbation theory on a continuous Fourier space, which leads to effective, i.e., time-independent, Hamiltonians. It allows the back-calculation of the pulse scheme from the desired effective Hamiltonian as a function of spin-system parameters. We show as an example how to back-calculate the rf irradiation in the MIRROR experiment from the desired chemical-shift offset behavior of the sequence. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0109229 |