Loading…
Phonon-induced exciton weak localization in two-dimensional semiconductors
We theoretically study the contribution of quantum effects to the exciton diffusion coefficient in atomically thin crystals. It is related to the weak localization caused by the interference of excitonic wavefunctions on the trajectories with closed loops. Due to the weak inelasticity of the exciton...
Saved in:
Published in: | Applied physics letters 2022-11, Vol.121 (19) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We theoretically study the contribution of quantum effects to the exciton diffusion coefficient in atomically thin crystals. It is related to the weak localization caused by the interference of excitonic wavefunctions on the trajectories with closed loops. Due to the weak inelasticity of the exciton–phonon interaction, the effect is present even if the excitons are scattered by long-wavelength acoustic phonons. We consider exciton interaction with longitudinal acoustic phonons with linear dispersion and flexural phonons with quadratic dispersion. We identify the regimes where the weak localization effect can be particularly pronounced. We also briefly address the role of free charge carriers in the exciton quantum transport and, within the self-consistent theory of localization, the weak localization effects beyond the lowest order. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/5.0122633 |