Loading…

Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity

The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2022-11, Vol.45 (17), p.11272-11296
Main Authors: Biswas, Reshmi, Bahrouni, Anouar, Fiscella, Alessio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753
cites cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753
container_end_page 11296
container_issue 17
container_start_page 11272
container_title Mathematical methods in the applied sciences
container_volume 45
creator Biswas, Reshmi
Bahrouni, Anouar
Fiscella, Alessio
description The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}& \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+{\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u=\lambda b(x){\left|u\right|}^{\alpha (x)-2}u\\ {}& +\mu a(x){\left|u\right|}^{r(x)-2}u\log \mid u\mid +\mu c(x){\left|u\right|}^{\eta (x)-2}u,\\ {}& x\in \Omega, \\ {}& \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\mathcal{N}}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+\beta (x)\left({\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u\right)=0,\\ {}& x\in {\mathbb{R}}^N\backslash \overline{\Omega},\end{array}\right. $$ where (−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ and Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ denote the variable si(·)$$ {s}_i\left(\cdotp \right) $$‐order pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(0,1\right) $$ and pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(1,\infty \right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here, Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}^N $$ is a bounded smooth domain with N>pi(x,y)si(x,y)$$ N>{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any (x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and μ$$ \mu $$ are a positive parameters, r(·)$$ r\left(\cdotp \right) $$ and η(·)$$ \eta \left(\cdotp \right) $$ are
doi_str_mv 10.1002/mma.8449
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733927415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733927415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</originalsourceid><addsrcrecordid>eNp10NFKwzAUBuAgCs4p-AgBb7zpTJq0aS7HcCpMBNHrkranW0ab1KSb9s5H8Bl9ElPnrVeBPx-Hc36ELimZUULim7ZVs4xzeYQmlEgZUS7SYzQhVJCIx5SfojPvt4SQjNJ4gpqlU2WvrVENruyuaAB3G-UBP9tCG9w5G6IWa7O3zV6bNd4rp1XIvj-_rKvAYfjorAHTe6xMhRu7DqDftOG_HzrAxppGGxjD4Ryd1KrxcPH3TtHr8vZlcR-tnu4eFvNVVMaSyUgmKS1JlggFdcnKmrOUJJAkoqoKWQNIwYEAk4rIrKApDzIpUlbQuEgzJRI2RVeHuWH9tx34Pt_anQsn-jwWjMlYcDqq64MqnfXeQZ13TrfKDTkl-dhlHrrMxy4DjQ70XTcw_Ovyx8f5r_8Bib14_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733927415</pqid></control><display><type>article</type><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</creator><creatorcontrib>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</creatorcontrib><description><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}&amp; \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u&#x0003D;\lambda b(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\alpha (x)-2}u\\ {}&amp; &#x0002B;\mu a(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{r(x)-2}u\log \mid u\mid &#x0002B;\mu c(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\eta (x)-2}u,\\ {}&amp; x\in \Omega, \\ {}&amp; \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\mathcal{N}}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;\beta (x)\left({\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u\right)&#x0003D;0,\\ {}&amp; x\in {\mathbb{R}}&#x0005E;N\backslash \overline{\Omega},\end{array}\right. $$ where (−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ and Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ denote the variable si(·)$$ {s}_i\left(\cdotp \right) $$‐order pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(0,1\right) $$ and pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(1,\infty \right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here, Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}&#x0005E;N $$ is a bounded smooth domain with N>pi(x,y)si(x,y)$$ N&gt;{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any (x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and μ$$ \mu $$ are a positive parameters, r(·)$$ r\left(\cdotp \right) $$ and η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent α(x)$$ \alpha (x) $$ can be close to the critical exponent p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}&#x0005E;{\ast }(x)&#x0003D;N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)&#x0003D;{p}_2\left(x,x\right) $$ and s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)&#x0003D;{s}_2\left(x,x\right) $$ for x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is, α(x)<p2s2∗(x)$$ \alpha (x)&lt;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$, for any x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely, α(x)=p2s2∗(x)$$ \alpha (x)&#x0003D;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$ for some x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8449</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Arrays ; Continuity (mathematics) ; critical nonlinearity ; double phase problem ; Exponents ; logarithmic nonlinearity ; Logarithms ; Nonlinearity ; Operators (mathematics) ; Robin boundary condition ; variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian ; Variational methods</subject><ispartof>Mathematical methods in the applied sciences, 2022-11, Vol.45 (17), p.11272-11296</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</citedby><cites>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</cites><orcidid>0000-0002-5465-4064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Biswas, Reshmi</creatorcontrib><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>Fiscella, Alessio</creatorcontrib><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><title>Mathematical methods in the applied sciences</title><description><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}&amp; \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u&#x0003D;\lambda b(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\alpha (x)-2}u\\ {}&amp; &#x0002B;\mu a(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{r(x)-2}u\log \mid u\mid &#x0002B;\mu c(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\eta (x)-2}u,\\ {}&amp; x\in \Omega, \\ {}&amp; \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\mathcal{N}}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;\beta (x)\left({\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u\right)&#x0003D;0,\\ {}&amp; x\in {\mathbb{R}}&#x0005E;N\backslash \overline{\Omega},\end{array}\right. $$ where (−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ and Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ denote the variable si(·)$$ {s}_i\left(\cdotp \right) $$‐order pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(0,1\right) $$ and pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(1,\infty \right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here, Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}&#x0005E;N $$ is a bounded smooth domain with N>pi(x,y)si(x,y)$$ N&gt;{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any (x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and μ$$ \mu $$ are a positive parameters, r(·)$$ r\left(\cdotp \right) $$ and η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent α(x)$$ \alpha (x) $$ can be close to the critical exponent p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}&#x0005E;{\ast }(x)&#x0003D;N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)&#x0003D;{p}_2\left(x,x\right) $$ and s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)&#x0003D;{s}_2\left(x,x\right) $$ for x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is, α(x)<p2s2∗(x)$$ \alpha (x)&lt;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$, for any x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely, α(x)=p2s2∗(x)$$ \alpha (x)&#x0003D;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$ for some x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></description><subject>Arrays</subject><subject>Continuity (mathematics)</subject><subject>critical nonlinearity</subject><subject>double phase problem</subject><subject>Exponents</subject><subject>logarithmic nonlinearity</subject><subject>Logarithms</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>Robin boundary condition</subject><subject>variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian</subject><subject>Variational methods</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10NFKwzAUBuAgCs4p-AgBb7zpTJq0aS7HcCpMBNHrkranW0ab1KSb9s5H8Bl9ElPnrVeBPx-Hc36ELimZUULim7ZVs4xzeYQmlEgZUS7SYzQhVJCIx5SfojPvt4SQjNJ4gpqlU2WvrVENruyuaAB3G-UBP9tCG9w5G6IWa7O3zV6bNd4rp1XIvj-_rKvAYfjorAHTe6xMhRu7DqDftOG_HzrAxppGGxjD4Ryd1KrxcPH3TtHr8vZlcR-tnu4eFvNVVMaSyUgmKS1JlggFdcnKmrOUJJAkoqoKWQNIwYEAk4rIrKApDzIpUlbQuEgzJRI2RVeHuWH9tx34Pt_anQsn-jwWjMlYcDqq64MqnfXeQZ13TrfKDTkl-dhlHrrMxy4DjQ70XTcw_Ovyx8f5r_8Bib14_w</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Biswas, Reshmi</creator><creator>Bahrouni, Anouar</creator><creator>Fiscella, Alessio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5465-4064</orcidid></search><sort><creationdate>20221130</creationdate><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><author>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Continuity (mathematics)</topic><topic>critical nonlinearity</topic><topic>double phase problem</topic><topic>Exponents</topic><topic>logarithmic nonlinearity</topic><topic>Logarithms</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>Robin boundary condition</topic><topic>variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Reshmi</creatorcontrib><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>Fiscella, Alessio</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Reshmi</au><au>Bahrouni, Anouar</au><au>Fiscella, Alessio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-11-30</date><risdate>2022</risdate><volume>45</volume><issue>17</issue><spage>11272</spage><epage>11296</epage><pages>11272-11296</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}&amp; \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u&#x0003D;\lambda b(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\alpha (x)-2}u\\ {}&amp; &#x0002B;\mu a(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{r(x)-2}u\log \mid u\mid &#x0002B;\mu c(x){\left&#x0007C;u\right&#x0007C;}&#x0005E;{\eta (x)-2}u,\\ {}&amp; x\in \Omega, \\ {}&amp; \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}&#x0005E;{s_1\left(\cdotp \right)}(u)&#x0002B;{\mathcal{N}}_{p_2\left(\cdotp \right)}&#x0005E;{s_2\left(\cdotp \right)}(u)&#x0002B;\beta (x)\left({\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_1(x)-2}u&#x0002B;{\left&#x0007C;u\right&#x0007C;}&#x0005E;{{\overline{p}}_2(x)-2}u\right)&#x0003D;0,\\ {}&amp; x\in {\mathbb{R}}&#x0005E;N\backslash \overline{\Omega},\end{array}\right. $$ where (−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ and Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}&#x0005E;{s_i\left(\cdotp \right)} $$ denote the variable si(·)$$ {s}_i\left(\cdotp \right) $$‐order pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(0,1\right) $$ and pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}&#x0005E;{2N}\to \left(1,\infty \right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here, Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}&#x0005E;N $$ is a bounded smooth domain with N>pi(x,y)si(x,y)$$ N&gt;{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ ( i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any (x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and μ$$ \mu $$ are a positive parameters, r(·)$$ r\left(\cdotp \right) $$ and η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent α(x)$$ \alpha (x) $$ can be close to the critical exponent p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}&#x0005E;{\ast }(x)&#x0003D;N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)&#x0003D;{p}_2\left(x,x\right) $$ and s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)&#x0003D;{s}_2\left(x,x\right) $$ for x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is, α(x)<p2s2∗(x)$$ \alpha (x)&lt;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$, for any x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely, α(x)=p2s2∗(x)$$ \alpha (x)&#x0003D;{p}_{2_{s_2}}&#x0005E;{\ast }(x) $$ for some x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8449</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5465-4064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2022-11, Vol.45 (17), p.11272-11296
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2733927415
source Wiley-Blackwell Read & Publish Collection
subjects Arrays
Continuity (mathematics)
critical nonlinearity
double phase problem
Exponents
logarithmic nonlinearity
Logarithms
Nonlinearity
Operators (mathematics)
Robin boundary condition
variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian
Variational methods
title Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20double%20phase%20Robin%20problem%20involving%20variable%E2%80%90order%20exponents%20and%20logarithm%E2%80%90type%20nonlinearity&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Biswas,%20Reshmi&rft.date=2022-11-30&rft.volume=45&rft.issue=17&rft.spage=11272&rft.epage=11296&rft.pages=11272-11296&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8449&rft_dat=%3Cproquest_cross%3E2733927415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733927415&rft_id=info:pmid/&rfr_iscdi=true