Loading…
Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity
The paper deals with the logarithmic fractional equations with variable exponents (−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll...
Saved in:
Published in: | Mathematical methods in the applied sciences 2022-11, Vol.45 (17), p.11272-11296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753 |
---|---|
cites | cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753 |
container_end_page | 11296 |
container_issue | 17 |
container_start_page | 11272 |
container_title | Mathematical methods in the applied sciences |
container_volume | 45 |
creator | Biswas, Reshmi Bahrouni, Anouar Fiscella, Alessio |
description | The paper deals with the logarithmic fractional equations with variable exponents
(−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}& \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+{\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u=\lambda b(x){\left|u\right|}^{\alpha (x)-2}u\\ {}& +\mu a(x){\left|u\right|}^{r(x)-2}u\log \mid u\mid +\mu c(x){\left|u\right|}^{\eta (x)-2}u,\\ {}& x\in \Omega, \\ {}& \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\mathcal{N}}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+\beta (x)\left({\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u\right)=0,\\ {}& x\in {\mathbb{R}}^N\backslash \overline{\Omega},\end{array}\right. $$
where
(−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ and
Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ denote the variable
si(·)$$ {s}_i\left(\cdotp \right) $$‐order
pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal
pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of
si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with
si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(0,1\right) $$ and
pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(1,\infty \right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here,
Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}^N $$ is a bounded smooth domain with
N>pi(x,y)si(x,y)$$ N>{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any
(x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and
μ$$ \mu $$ are a positive parameters,
r(·)$$ r\left(\cdotp \right) $$ and
η(·)$$ \eta \left(\cdotp \right) $$ are |
doi_str_mv | 10.1002/mma.8449 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733927415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733927415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</originalsourceid><addsrcrecordid>eNp10NFKwzAUBuAgCs4p-AgBb7zpTJq0aS7HcCpMBNHrkranW0ab1KSb9s5H8Bl9ElPnrVeBPx-Hc36ELimZUULim7ZVs4xzeYQmlEgZUS7SYzQhVJCIx5SfojPvt4SQjNJ4gpqlU2WvrVENruyuaAB3G-UBP9tCG9w5G6IWa7O3zV6bNd4rp1XIvj-_rKvAYfjorAHTe6xMhRu7DqDftOG_HzrAxppGGxjD4Ryd1KrxcPH3TtHr8vZlcR-tnu4eFvNVVMaSyUgmKS1JlggFdcnKmrOUJJAkoqoKWQNIwYEAk4rIrKApDzIpUlbQuEgzJRI2RVeHuWH9tx34Pt_anQsn-jwWjMlYcDqq64MqnfXeQZ13TrfKDTkl-dhlHrrMxy4DjQ70XTcw_Ovyx8f5r_8Bib14_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733927415</pqid></control><display><type>article</type><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</creator><creatorcontrib>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</creatorcontrib><description><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents
(−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}& \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+{\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u=\lambda b(x){\left|u\right|}^{\alpha (x)-2}u\\ {}& +\mu a(x){\left|u\right|}^{r(x)-2}u\log \mid u\mid +\mu c(x){\left|u\right|}^{\eta (x)-2}u,\\ {}& x\in \Omega, \\ {}& \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\mathcal{N}}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+\beta (x)\left({\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u\right)=0,\\ {}& x\in {\mathbb{R}}^N\backslash \overline{\Omega},\end{array}\right. $$
where
(−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ and
Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ denote the variable
si(·)$$ {s}_i\left(\cdotp \right) $$‐order
pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal
pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of
si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with
si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(0,1\right) $$ and
pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(1,\infty \right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here,
Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}^N $$ is a bounded smooth domain with
N>pi(x,y)si(x,y)$$ N>{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any
(x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and
μ$$ \mu $$ are a positive parameters,
r(·)$$ r\left(\cdotp \right) $$ and
η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent
α(x)$$ \alpha (x) $$ can be close to the critical exponent
p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}^{\ast }(x)=N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with
p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)={p}_2\left(x,x\right) $$ and
s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)={s}_2\left(x,x\right) $$ for
x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is,
α(x)<p2s2∗(x)$$ \alpha (x)<{p}_{2_{s_2}}^{\ast }(x) $$, for any
x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely,
α(x)=p2s2∗(x)$$ \alpha (x)={p}_{2_{s_2}}^{\ast }(x) $$ for some
x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8449</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Arrays ; Continuity (mathematics) ; critical nonlinearity ; double phase problem ; Exponents ; logarithmic nonlinearity ; Logarithms ; Nonlinearity ; Operators (mathematics) ; Robin boundary condition ; variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian ; Variational methods</subject><ispartof>Mathematical methods in the applied sciences, 2022-11, Vol.45 (17), p.11272-11296</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</citedby><cites>FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</cites><orcidid>0000-0002-5465-4064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Biswas, Reshmi</creatorcontrib><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>Fiscella, Alessio</creatorcontrib><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><title>Mathematical methods in the applied sciences</title><description><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents
(−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}& \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+{\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u=\lambda b(x){\left|u\right|}^{\alpha (x)-2}u\\ {}& +\mu a(x){\left|u\right|}^{r(x)-2}u\log \mid u\mid +\mu c(x){\left|u\right|}^{\eta (x)-2}u,\\ {}& x\in \Omega, \\ {}& \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\mathcal{N}}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+\beta (x)\left({\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u\right)=0,\\ {}& x\in {\mathbb{R}}^N\backslash \overline{\Omega},\end{array}\right. $$
where
(−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ and
Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ denote the variable
si(·)$$ {s}_i\left(\cdotp \right) $$‐order
pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal
pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of
si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with
si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(0,1\right) $$ and
pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(1,\infty \right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here,
Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}^N $$ is a bounded smooth domain with
N>pi(x,y)si(x,y)$$ N>{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any
(x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and
μ$$ \mu $$ are a positive parameters,
r(·)$$ r\left(\cdotp \right) $$ and
η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent
α(x)$$ \alpha (x) $$ can be close to the critical exponent
p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}^{\ast }(x)=N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with
p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)={p}_2\left(x,x\right) $$ and
s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)={s}_2\left(x,x\right) $$ for
x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is,
α(x)<p2s2∗(x)$$ \alpha (x)<{p}_{2_{s_2}}^{\ast }(x) $$, for any
x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely,
α(x)=p2s2∗(x)$$ \alpha (x)={p}_{2_{s_2}}^{\ast }(x) $$ for some
x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></description><subject>Arrays</subject><subject>Continuity (mathematics)</subject><subject>critical nonlinearity</subject><subject>double phase problem</subject><subject>Exponents</subject><subject>logarithmic nonlinearity</subject><subject>Logarithms</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>Robin boundary condition</subject><subject>variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian</subject><subject>Variational methods</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10NFKwzAUBuAgCs4p-AgBb7zpTJq0aS7HcCpMBNHrkranW0ab1KSb9s5H8Bl9ElPnrVeBPx-Hc36ELimZUULim7ZVs4xzeYQmlEgZUS7SYzQhVJCIx5SfojPvt4SQjNJ4gpqlU2WvrVENruyuaAB3G-UBP9tCG9w5G6IWa7O3zV6bNd4rp1XIvj-_rKvAYfjorAHTe6xMhRu7DqDftOG_HzrAxppGGxjD4Ryd1KrxcPH3TtHr8vZlcR-tnu4eFvNVVMaSyUgmKS1JlggFdcnKmrOUJJAkoqoKWQNIwYEAk4rIrKApDzIpUlbQuEgzJRI2RVeHuWH9tx34Pt_anQsn-jwWjMlYcDqq64MqnfXeQZ13TrfKDTkl-dhlHrrMxy4DjQ70XTcw_Ovyx8f5r_8Bib14_w</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Biswas, Reshmi</creator><creator>Bahrouni, Anouar</creator><creator>Fiscella, Alessio</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-5465-4064</orcidid></search><sort><creationdate>20221130</creationdate><title>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</title><author>Biswas, Reshmi ; Bahrouni, Anouar ; Fiscella, Alessio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Continuity (mathematics)</topic><topic>critical nonlinearity</topic><topic>double phase problem</topic><topic>Exponents</topic><topic>logarithmic nonlinearity</topic><topic>Logarithms</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>Robin boundary condition</topic><topic>variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Reshmi</creatorcontrib><creatorcontrib>Bahrouni, Anouar</creatorcontrib><creatorcontrib>Fiscella, Alessio</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Reshmi</au><au>Bahrouni, Anouar</au><au>Fiscella, Alessio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2022-11-30</date><risdate>2022</risdate><volume>45</volume><issue>17</issue><spage>11272</spage><epage>11296</epage><pages>11272-11296</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract><![CDATA[The paper deals with the logarithmic fractional equations with variable exponents
(−Δ)p1(·)s1(·)(u)+(−Δ)p2(·)s2(·)(u)+|u|p‾1(x)−2u+|u|p‾2(x)−2u=λb(x)|u|α(x)−2u+μa(x)|u|r(x)−2ulog|u|+μc(x)|u|η(x)−2u,x∈Ω,Np1(·)s1(·)(u)+Np2(·)s2(·)(u)+β(x)(|u|p‾1(x)−2u+|u|p‾2(x)−2u)=0,x∈ℝN\Ω‾,$$ \left\{\begin{array}{ll}& \kern-5pt {\left(-\Delta \right)}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\left(-\Delta \right)}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+{\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u=\lambda b(x){\left|u\right|}^{\alpha (x)-2}u\\ {}& +\mu a(x){\left|u\right|}^{r(x)-2}u\log \mid u\mid +\mu c(x){\left|u\right|}^{\eta (x)-2}u,\\ {}& x\in \Omega, \\ {}& \kern-5pt {\mathcal{N}}_{p_1\left(\cdotp \right)}^{s_1\left(\cdotp \right)}(u)+{\mathcal{N}}_{p_2\left(\cdotp \right)}^{s_2\left(\cdotp \right)}(u)+\beta (x)\left({\left|u\right|}^{{\overline{p}}_1(x)-2}u+{\left|u\right|}^{{\overline{p}}_2(x)-2}u\right)=0,\\ {}& x\in {\mathbb{R}}^N\backslash \overline{\Omega},\end{array}\right. $$
where
(−Δ)pi(·)si(·)$$ {\left(-\Delta \right)}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ and
Npi(·)si(·)$$ {\mathcal{N}}_{p_i\left(\cdotp \right)}^{s_i\left(\cdotp \right)} $$ denote the variable
si(·)$$ {s}_i\left(\cdotp \right) $$‐order
pi(·)$$ {p}_i\left(\cdotp \right) $$‐fractional Laplace operator and the nonlocal normal
pi(·)$$ {p}_i\left(\cdotp \right) $$‐derivative of
si(·)$$ {s}_i\left(\cdotp \right) $$‐order, respectively, with
si(·):ℝ2N→(0,1)$$ {s}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(0,1\right) $$ and
pi(·):ℝ2N→(1,∞)$$ {p}_i\left(\cdotp \right):{\mathbb{R}}^{2N}\to \left(1,\infty \right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) being continuous. Here,
Ω⊂ℝN$$ \Omega \subset {\mathbb{R}}^N $$ is a bounded smooth domain with
N>pi(x,y)si(x,y)$$ N>{p}_i\left(x,y\right){s}_i\left(x,y\right) $$ (
i∈{1,2}$$ i\in \left\{1,2\right\} $$) for any
(x,y)∈Ω‾×Ω‾,λ$$ \left(x,y\right)\in \overline{\Omega}\times \overline{\Omega},\lambda $$ and
μ$$ \mu $$ are a positive parameters,
r(·)$$ r\left(\cdotp \right) $$ and
η(·)$$ \eta \left(\cdotp \right) $$ are two continuous functions, while variable exponent
α(x)$$ \alpha (x) $$ can be close to the critical exponent
p2s2∗(x)=Np‾2(x)/(N−s‾2(x)p‾2(x))$$ {p}_{2{s}_2}^{\ast }(x)=N{\overline{p}}_2(x)/\left(N-{\overline{s}}_2(x){\overline{p}}_2(x)\right) $$, given with
p‾2(x)=p2(x,x)$$ {\overline{p}}_2(x)={p}_2\left(x,x\right) $$ and
s‾2(x)=s2(x,x)$$ {\overline{s}}_2(x)={s}_2\left(x,x\right) $$ for
x∈Ω‾$$ x\in \overline{\Omega} $$. Precisely, we consider two cases. In the first case, we deal with subcritical nonlinearity, that is,
α(x)<p2s2∗(x)$$ \alpha (x)<{p}_{2_{s_2}}^{\ast }(x) $$, for any
x∈Ω‾$$ x\in \overline{\Omega} $$. In the second case, we study the critical exponent, namely,
α(x)=p2s2∗(x)$$ \alpha (x)={p}_{2_{s_2}}^{\ast }(x) $$ for some
x∈Ω‾$$ x\in \overline{\Omega} $$. Then, using variational methods, we prove the existence and multiplicity of solutions and existence of ground state solutions to the above problem.]]></abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8449</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5465-4064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2022-11, Vol.45 (17), p.11272-11296 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2733927415 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Arrays Continuity (mathematics) critical nonlinearity double phase problem Exponents logarithmic nonlinearity Logarithms Nonlinearity Operators (mathematics) Robin boundary condition variable‐order fractional p(·)$$ p\left(\cdotp \right) $$‐Laplacian Variational methods |
title | Fractional double phase Robin problem involving variable‐order exponents and logarithm‐type nonlinearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20double%20phase%20Robin%20problem%20involving%20variable%E2%80%90order%20exponents%20and%20logarithm%E2%80%90type%20nonlinearity&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Biswas,%20Reshmi&rft.date=2022-11-30&rft.volume=45&rft.issue=17&rft.spage=11272&rft.epage=11296&rft.pages=11272-11296&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8449&rft_dat=%3Cproquest_cross%3E2733927415%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-9561c0857aefc3cf43605e557ddb9fee974e0e39a098b1648575b63b12b68a753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733927415&rft_id=info:pmid/&rfr_iscdi=true |