Loading…
Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation
Frequency estimation of a 2-D complex sinusoid under white Gaussian noise is a significant problem having a wide range of applications from signal processing, radar/sonar to wireless communications. This paper proposes two novel and fast DFT-based algorithms for the frequency estimation of 2-D compl...
Saved in:
Published in: | IEEE transactions on signal processing 2022-01, Vol.70, p.5087 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 5087 |
container_title | IEEE transactions on signal processing |
container_volume | 70 |
creator | Solak, Veyis Sultan Aldirmaz-Colak Serbes, Ahmet |
description | Frequency estimation of a 2-D complex sinusoid under white Gaussian noise is a significant problem having a wide range of applications from signal processing, radar/sonar to wireless communications. This paper proposes two novel and fast DFT-based algorithms for the frequency estimation of 2-D complex sinusoids. The proposed algorithms employ [Formula Omitted]-shifted DFT coefficients of the signal that correspond to interpolating the signal by a factor of [Formula Omitted] without actually performing zero-padding, where [Formula Omitted]. We show that the first algorithm is asymptotically efficient since it achieves the asymptotic Cramér-Rao bound (CRB) when the DFT shift parameter and the number of iterations are selected appropriately for large signal size. We propose strict bounds on the selection of these parameters for overall asymptotic efficiency. Then, based on the first algorithm, we propose a second algorithm which also performs on the CRB for both small and large signal lengths. The total computational cost of both of the proposed algorithms is in the order of [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are the size of the signal. Finally, we generalize the second algorithm to [Formula Omitted]-dimensions, where [Formula Omitted] is any integer larger than one. Comprehensive simulation results confirm all of our theoretical derivations, and also show that our algorithms outperform existing algorithms. |
doi_str_mv | 10.1109/TSP.2022.3216929 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2734387393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734387393</sourcerecordid><originalsourceid>FETCH-proquest_journals_27343873933</originalsourceid><addsrcrecordid>eNqNirsKwjAARYMo-NwdA86pedmaVW1wU7CDIFJCm0KkTbRJB__eIn6A072ccwBYEhwRgsU6u5wjiimNGCWxoGIAJkRwgjBP4mH_8YahzTa5jsHU-wfGhHMRT8BVKh-gsiVMq8oURtsAKTp8yU26tulqBU-NCUGX954fZIZ2yusSXoztvDOlqqFs9avTtnjD1AfTqGCcnYNRpWqvF7-dgZVMs_0RPVvXxz7kD9e1tlc5TRhn24QJxv6rPm1ZRuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387393</pqid></control><display><type>article</type><title>Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Solak, Veyis ; Sultan Aldirmaz-Colak ; Serbes, Ahmet</creator><creatorcontrib>Solak, Veyis ; Sultan Aldirmaz-Colak ; Serbes, Ahmet</creatorcontrib><description>Frequency estimation of a 2-D complex sinusoid under white Gaussian noise is a significant problem having a wide range of applications from signal processing, radar/sonar to wireless communications. This paper proposes two novel and fast DFT-based algorithms for the frequency estimation of 2-D complex sinusoids. The proposed algorithms employ [Formula Omitted]-shifted DFT coefficients of the signal that correspond to interpolating the signal by a factor of [Formula Omitted] without actually performing zero-padding, where [Formula Omitted]. We show that the first algorithm is asymptotically efficient since it achieves the asymptotic Cramér-Rao bound (CRB) when the DFT shift parameter and the number of iterations are selected appropriately for large signal size. We propose strict bounds on the selection of these parameters for overall asymptotic efficiency. Then, based on the first algorithm, we propose a second algorithm which also performs on the CRB for both small and large signal lengths. The total computational cost of both of the proposed algorithms is in the order of [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are the size of the signal. Finally, we generalize the second algorithm to [Formula Omitted]-dimensions, where [Formula Omitted] is any integer larger than one. Comprehensive simulation results confirm all of our theoretical derivations, and also show that our algorithms outperform existing algorithms.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2022.3216929</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Asymptotic properties ; Parameters ; Random noise ; Signal processing ; Sine waves ; Wireless communications</subject><ispartof>IEEE transactions on signal processing, 2022-01, Vol.70, p.5087</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Solak, Veyis</creatorcontrib><creatorcontrib>Sultan Aldirmaz-Colak</creatorcontrib><creatorcontrib>Serbes, Ahmet</creatorcontrib><title>Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation</title><title>IEEE transactions on signal processing</title><description>Frequency estimation of a 2-D complex sinusoid under white Gaussian noise is a significant problem having a wide range of applications from signal processing, radar/sonar to wireless communications. This paper proposes two novel and fast DFT-based algorithms for the frequency estimation of 2-D complex sinusoids. The proposed algorithms employ [Formula Omitted]-shifted DFT coefficients of the signal that correspond to interpolating the signal by a factor of [Formula Omitted] without actually performing zero-padding, where [Formula Omitted]. We show that the first algorithm is asymptotically efficient since it achieves the asymptotic Cramér-Rao bound (CRB) when the DFT shift parameter and the number of iterations are selected appropriately for large signal size. We propose strict bounds on the selection of these parameters for overall asymptotic efficiency. Then, based on the first algorithm, we propose a second algorithm which also performs on the CRB for both small and large signal lengths. The total computational cost of both of the proposed algorithms is in the order of [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are the size of the signal. Finally, we generalize the second algorithm to [Formula Omitted]-dimensions, where [Formula Omitted] is any integer larger than one. Comprehensive simulation results confirm all of our theoretical derivations, and also show that our algorithms outperform existing algorithms.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Parameters</subject><subject>Random noise</subject><subject>Signal processing</subject><subject>Sine waves</subject><subject>Wireless communications</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNirsKwjAARYMo-NwdA86pedmaVW1wU7CDIFJCm0KkTbRJB__eIn6A072ccwBYEhwRgsU6u5wjiimNGCWxoGIAJkRwgjBP4mH_8YahzTa5jsHU-wfGhHMRT8BVKh-gsiVMq8oURtsAKTp8yU26tulqBU-NCUGX954fZIZ2yusSXoztvDOlqqFs9avTtnjD1AfTqGCcnYNRpWqvF7-dgZVMs_0RPVvXxz7kD9e1tlc5TRhn24QJxv6rPm1ZRuM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Solak, Veyis</creator><creator>Sultan Aldirmaz-Colak</creator><creator>Serbes, Ahmet</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220101</creationdate><title>Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation</title><author>Solak, Veyis ; Sultan Aldirmaz-Colak ; Serbes, Ahmet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27343873933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Parameters</topic><topic>Random noise</topic><topic>Signal processing</topic><topic>Sine waves</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solak, Veyis</creatorcontrib><creatorcontrib>Sultan Aldirmaz-Colak</creatorcontrib><creatorcontrib>Serbes, Ahmet</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solak, Veyis</au><au>Sultan Aldirmaz-Colak</au><au>Serbes, Ahmet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation</atitle><jtitle>IEEE transactions on signal processing</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>70</volume><spage>5087</spage><pages>5087-</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><abstract>Frequency estimation of a 2-D complex sinusoid under white Gaussian noise is a significant problem having a wide range of applications from signal processing, radar/sonar to wireless communications. This paper proposes two novel and fast DFT-based algorithms for the frequency estimation of 2-D complex sinusoids. The proposed algorithms employ [Formula Omitted]-shifted DFT coefficients of the signal that correspond to interpolating the signal by a factor of [Formula Omitted] without actually performing zero-padding, where [Formula Omitted]. We show that the first algorithm is asymptotically efficient since it achieves the asymptotic Cramér-Rao bound (CRB) when the DFT shift parameter and the number of iterations are selected appropriately for large signal size. We propose strict bounds on the selection of these parameters for overall asymptotic efficiency. Then, based on the first algorithm, we propose a second algorithm which also performs on the CRB for both small and large signal lengths. The total computational cost of both of the proposed algorithms is in the order of [Formula Omitted], where [Formula Omitted] and [Formula Omitted] are the size of the signal. Finally, we generalize the second algorithm to [Formula Omitted]-dimensions, where [Formula Omitted] is any integer larger than one. Comprehensive simulation results confirm all of our theoretical derivations, and also show that our algorithms outperform existing algorithms.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TSP.2022.3216929</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2022-01, Vol.70, p.5087 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2734387393 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Asymptotic properties Parameters Random noise Signal processing Sine waves Wireless communications |
title | Fast and Efficient 2-D and [Formula Omitted]-D DFT-Based Sinusoidal Frequency Estimation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Efficient%202-D%20and%20%5BFormula%20Omitted%5D-D%20DFT-Based%20Sinusoidal%20Frequency%20Estimation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Solak,%20Veyis&rft.date=2022-01-01&rft.volume=70&rft.spage=5087&rft.pages=5087-&rft.issn=1053-587X&rft.eissn=1941-0476&rft_id=info:doi/10.1109/TSP.2022.3216929&rft_dat=%3Cproquest%3E2734387393%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27343873933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734387393&rft_id=info:pmid/&rfr_iscdi=true |