Loading…

Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations

This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in t...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robust and nonlinear control 2022-12, Vol.32 (18), p.9957-9976
Main Authors: Shen, Mingxuan, Fei, Chen, Fei, Weiyin, Mao, Xuerong, Mei, Chunhui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233
cites cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233
container_end_page 9976
container_issue 18
container_start_page 9957
container_title International journal of robust and nonlinear control
container_volume 32
creator Shen, Mingxuan
Fei, Chen
Fei, Weiyin
Mao, Xuerong
Mei, Chunhui
description This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.
doi_str_mv 10.1002/rnc.6384
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734499391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734499391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwy4cTM1yU2dyVLqLxQF0XXI5MemxEybzCCz8xF8Rp_EjHXr6p577sfhchA6JXhGMKYXMajZJdRsD00I5rwkFPj-qBkva07hEB2ltMY43yibIH1tvBy-P7-02ZigTeiK1MnGedcNRWuLlXtb-aEIbfAuGBmLYPouSp-pVq1k6pwqbB9U59qQXe2sNTGnuLyYbS9HPx2jAyt9Mid_c4peb29eFvfl8unuYXG1LBXlwEpKa42ZplRBlrKWwBUG3cyxAcKVqixjNWCiaQOqmmtoalJhsLrC0swpwBSd7XI3sd32JnVi3fYx_5UErYAxzoGTTJ3vKBXblKKxYhPdu4yDIFiMHYrcoRg7zGi5Qz-cN8O_nHh-XPzyP3__dPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734499391</pqid></control><display><type>article</type><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</creator><creatorcontrib>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</creatorcontrib><description>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6384</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Delay ; delay‐dependent stability ; Differential equations ; exponential stability ; highly nonlinear ; Markov switching ; Mathematical analysis ; neutral stochastic systems ; Stability criteria</subject><ispartof>International journal of robust and nonlinear control, 2022-12, Vol.32 (18), p.9957-9976</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</citedby><cites>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</cites><orcidid>0000-0001-9864-4258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shen, Mingxuan</creatorcontrib><creatorcontrib>Fei, Chen</creatorcontrib><creatorcontrib>Fei, Weiyin</creatorcontrib><creatorcontrib>Mao, Xuerong</creatorcontrib><creatorcontrib>Mei, Chunhui</creatorcontrib><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><title>International journal of robust and nonlinear control</title><description>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</description><subject>Delay</subject><subject>delay‐dependent stability</subject><subject>Differential equations</subject><subject>exponential stability</subject><subject>highly nonlinear</subject><subject>Markov switching</subject><subject>Mathematical analysis</subject><subject>neutral stochastic systems</subject><subject>Stability criteria</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwy4cTM1yU2dyVLqLxQF0XXI5MemxEybzCCz8xF8Rp_EjHXr6p577sfhchA6JXhGMKYXMajZJdRsD00I5rwkFPj-qBkva07hEB2ltMY43yibIH1tvBy-P7-02ZigTeiK1MnGedcNRWuLlXtb-aEIbfAuGBmLYPouSp-pVq1k6pwqbB9U59qQXe2sNTGnuLyYbS9HPx2jAyt9Mid_c4peb29eFvfl8unuYXG1LBXlwEpKa42ZplRBlrKWwBUG3cyxAcKVqixjNWCiaQOqmmtoalJhsLrC0swpwBSd7XI3sd32JnVi3fYx_5UErYAxzoGTTJ3vKBXblKKxYhPdu4yDIFiMHYrcoRg7zGi5Qz-cN8O_nHh-XPzyP3__dPY</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shen, Mingxuan</creator><creator>Fei, Chen</creator><creator>Fei, Weiyin</creator><creator>Mao, Xuerong</creator><creator>Mei, Chunhui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9864-4258</orcidid></search><sort><creationdate>202212</creationdate><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><author>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delay</topic><topic>delay‐dependent stability</topic><topic>Differential equations</topic><topic>exponential stability</topic><topic>highly nonlinear</topic><topic>Markov switching</topic><topic>Mathematical analysis</topic><topic>neutral stochastic systems</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Mingxuan</creatorcontrib><creatorcontrib>Fei, Chen</creatorcontrib><creatorcontrib>Fei, Weiyin</creatorcontrib><creatorcontrib>Mao, Xuerong</creatorcontrib><creatorcontrib>Mei, Chunhui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Mingxuan</au><au>Fei, Chen</au><au>Fei, Weiyin</au><au>Mao, Xuerong</au><au>Mei, Chunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-12</date><risdate>2022</risdate><volume>32</volume><issue>18</issue><spage>9957</spage><epage>9976</epage><pages>9957-9976</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6384</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9864-4258</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2022-12, Vol.32 (18), p.9957-9976
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2734499391
source Wiley-Blackwell Read & Publish Collection
subjects Delay
delay‐dependent stability
Differential equations
exponential stability
highly nonlinear
Markov switching
Mathematical analysis
neutral stochastic systems
Stability criteria
title Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%E2%80%90dependent%20stability%20of%20highly%20nonlinear%20neutral%20stochastic%20functional%20differential%20equations&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shen,%20Mingxuan&rft.date=2022-12&rft.volume=32&rft.issue=18&rft.spage=9957&rft.epage=9976&rft.pages=9957-9976&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6384&rft_dat=%3Cproquest_cross%3E2734499391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734499391&rft_id=info:pmid/&rfr_iscdi=true