Loading…
Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations
This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in t...
Saved in:
Published in: | International journal of robust and nonlinear control 2022-12, Vol.32 (18), p.9957-9976 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233 |
---|---|
cites | cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233 |
container_end_page | 9976 |
container_issue | 18 |
container_start_page | 9957 |
container_title | International journal of robust and nonlinear control |
container_volume | 32 |
creator | Shen, Mingxuan Fei, Chen Fei, Weiyin Mao, Xuerong Mei, Chunhui |
description | This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established. |
doi_str_mv | 10.1002/rnc.6384 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734499391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734499391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWKvgIwy4cTM1yU2dyVLqLxQF0XXI5MemxEybzCCz8xF8Rp_EjHXr6p577sfhchA6JXhGMKYXMajZJdRsD00I5rwkFPj-qBkva07hEB2ltMY43yibIH1tvBy-P7-02ZigTeiK1MnGedcNRWuLlXtb-aEIbfAuGBmLYPouSp-pVq1k6pwqbB9U59qQXe2sNTGnuLyYbS9HPx2jAyt9Mid_c4peb29eFvfl8unuYXG1LBXlwEpKa42ZplRBlrKWwBUG3cyxAcKVqixjNWCiaQOqmmtoalJhsLrC0swpwBSd7XI3sd32JnVi3fYx_5UErYAxzoGTTJ3vKBXblKKxYhPdu4yDIFiMHYrcoRg7zGi5Qz-cN8O_nHh-XPzyP3__dPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734499391</pqid></control><display><type>article</type><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</creator><creatorcontrib>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</creatorcontrib><description>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6384</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Delay ; delay‐dependent stability ; Differential equations ; exponential stability ; highly nonlinear ; Markov switching ; Mathematical analysis ; neutral stochastic systems ; Stability criteria</subject><ispartof>International journal of robust and nonlinear control, 2022-12, Vol.32 (18), p.9957-9976</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2022 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</citedby><cites>FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</cites><orcidid>0000-0001-9864-4258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shen, Mingxuan</creatorcontrib><creatorcontrib>Fei, Chen</creatorcontrib><creatorcontrib>Fei, Weiyin</creatorcontrib><creatorcontrib>Mao, Xuerong</creatorcontrib><creatorcontrib>Mei, Chunhui</creatorcontrib><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><title>International journal of robust and nonlinear control</title><description>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</description><subject>Delay</subject><subject>delay‐dependent stability</subject><subject>Differential equations</subject><subject>exponential stability</subject><subject>highly nonlinear</subject><subject>Markov switching</subject><subject>Mathematical analysis</subject><subject>neutral stochastic systems</subject><subject>Stability criteria</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWKvgIwy4cTM1yU2dyVLqLxQF0XXI5MemxEybzCCz8xF8Rp_EjHXr6p577sfhchA6JXhGMKYXMajZJdRsD00I5rwkFPj-qBkva07hEB2ltMY43yibIH1tvBy-P7-02ZigTeiK1MnGedcNRWuLlXtb-aEIbfAuGBmLYPouSp-pVq1k6pwqbB9U59qQXe2sNTGnuLyYbS9HPx2jAyt9Mid_c4peb29eFvfl8unuYXG1LBXlwEpKa42ZplRBlrKWwBUG3cyxAcKVqixjNWCiaQOqmmtoalJhsLrC0swpwBSd7XI3sd32JnVi3fYx_5UErYAxzoGTTJ3vKBXblKKxYhPdu4yDIFiMHYrcoRg7zGi5Qz-cN8O_nHh-XPzyP3__dPY</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shen, Mingxuan</creator><creator>Fei, Chen</creator><creator>Fei, Weiyin</creator><creator>Mao, Xuerong</creator><creator>Mei, Chunhui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9864-4258</orcidid></search><sort><creationdate>202212</creationdate><title>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</title><author>Shen, Mingxuan ; Fei, Chen ; Fei, Weiyin ; Mao, Xuerong ; Mei, Chunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Delay</topic><topic>delay‐dependent stability</topic><topic>Differential equations</topic><topic>exponential stability</topic><topic>highly nonlinear</topic><topic>Markov switching</topic><topic>Mathematical analysis</topic><topic>neutral stochastic systems</topic><topic>Stability criteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Mingxuan</creatorcontrib><creatorcontrib>Fei, Chen</creatorcontrib><creatorcontrib>Fei, Weiyin</creatorcontrib><creatorcontrib>Mao, Xuerong</creatorcontrib><creatorcontrib>Mei, Chunhui</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Mingxuan</au><au>Fei, Chen</au><au>Fei, Weiyin</au><au>Mao, Xuerong</au><au>Mei, Chunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2022-12</date><risdate>2022</risdate><volume>32</volume><issue>18</issue><spage>9957</spage><epage>9976</epage><pages>9957-9976</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>This article focuses on the delay‐dependent stability of highly nonlinear hybrid neutral stochastic functional differential equations (NSFDEs). The delay dependent stability criteria for a class of highly nonlinear hybrid NSFDEs are derived via the Lyapunov functional. The stabilities discussed in this article include H∞$$ {H}_{\infty } $$ stability, asymptotically stability and exponential stability. A numerical example is given to illustrate the criteria established.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6384</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9864-4258</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2022-12, Vol.32 (18), p.9957-9976 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2734499391 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Delay delay‐dependent stability Differential equations exponential stability highly nonlinear Markov switching Mathematical analysis neutral stochastic systems Stability criteria |
title | Delay‐dependent stability of highly nonlinear neutral stochastic functional differential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A54%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%E2%80%90dependent%20stability%20of%20highly%20nonlinear%20neutral%20stochastic%20functional%20differential%20equations&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Shen,%20Mingxuan&rft.date=2022-12&rft.volume=32&rft.issue=18&rft.spage=9957&rft.epage=9976&rft.pages=9957-9976&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6384&rft_dat=%3Cproquest_cross%3E2734499391%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-228d04d22c3228a8a39c03db50e319cc7f448301d2b3c75d3b81703fd70ae5233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734499391&rft_id=info:pmid/&rfr_iscdi=true |