Loading…

Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game

This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-11, Vol.11 (21), p.3583
Main Authors: Gong, Zifeng, He, Bing, Hu, Chen, Zhang, Xiaobo, Kang, Weijie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3
cites cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3
container_end_page
container_issue 21
container_start_page 3583
container_title Electronics (Basel)
container_volume 11
creator Gong, Zifeng
He, Bing
Hu, Chen
Zhang, Xiaobo
Kang, Weijie
description This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.
doi_str_mv 10.3390/electronics11213583
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2734621736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745598059</galeid><sourcerecordid>A745598059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</originalsourceid><addsrcrecordid>eNptUU1PwzAMrRBITGO_gEslzh35aJvmOMYYSINNYvfKy5wpo01G0g7t3xM0DhzwxfbTe8-2nCS3lIw5l-QeG1Sdd9aoQCmjvKj4RTJgRMhMMsku_9TXySiEPYkhKa84GSS7pW2MxXSyhUNnjpg-niy0RqUr73Ye2tbYXfYAAbfpu2v6zjibOp2-Yffl_EdEX_umM4cGs1XvQ48-BRupURWh2RG2EZlDizfJlYYm4Og3D5P102w9fc4Wy_nLdLLIFC9plwnC8jyHohJ5JQVuCIDAQm8UFlxoLTRnVG-2ahN7qUCAAk5oWRZMQsU1HyZ3Z9uDd589hq7eu97bOLFmguclo4KXkTU-s3bQYG2sdp2PTipuG093FrWJ-ETkRSErUsgo4GeB8i4Ej7o-eNOCP9WU1D9PqP95Av8GhWJ-OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734621736</pqid></control><display><type>article</type><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><source>Publicly Available Content Database</source><creator>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</creator><creatorcontrib>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</creatorcontrib><description>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11213583</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Communication ; Communications networks ; Computer &amp; video games ; Decision making ; Distance learning ; Dynamic programming ; Equilibrium ; Game theory ; Games ; Internet of Things ; Liapunov functions ; Multi-agent systems ; Multiagent systems ; Navigation systems ; Neural networks ; Performance indices ; Pursuit-evasion games ; Teaching methods</subject><ispartof>Electronics (Basel), 2022-11, Vol.11 (21), p.3583</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</citedby><cites>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734621736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734621736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gong, Zifeng</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Kang, Weijie</creatorcontrib><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><title>Electronics (Basel)</title><description>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Communication</subject><subject>Communications networks</subject><subject>Computer &amp; video games</subject><subject>Decision making</subject><subject>Distance learning</subject><subject>Dynamic programming</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Internet of Things</subject><subject>Liapunov functions</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Performance indices</subject><subject>Pursuit-evasion games</subject><subject>Teaching methods</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUU1PwzAMrRBITGO_gEslzh35aJvmOMYYSINNYvfKy5wpo01G0g7t3xM0DhzwxfbTe8-2nCS3lIw5l-QeG1Sdd9aoQCmjvKj4RTJgRMhMMsku_9TXySiEPYkhKa84GSS7pW2MxXSyhUNnjpg-niy0RqUr73Ye2tbYXfYAAbfpu2v6zjibOp2-Yffl_EdEX_umM4cGs1XvQ48-BRupURWh2RG2EZlDizfJlYYm4Og3D5P102w9fc4Wy_nLdLLIFC9plwnC8jyHohJ5JQVuCIDAQm8UFlxoLTRnVG-2ahN7qUCAAk5oWRZMQsU1HyZ3Z9uDd589hq7eu97bOLFmguclo4KXkTU-s3bQYG2sdp2PTipuG093FrWJ-ETkRSErUsgo4GeB8i4Ej7o-eNOCP9WU1D9PqP95Av8GhWJ-OA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Gong, Zifeng</creator><creator>He, Bing</creator><creator>Hu, Chen</creator><creator>Zhang, Xiaobo</creator><creator>Kang, Weijie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221101</creationdate><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><author>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Communication</topic><topic>Communications networks</topic><topic>Computer &amp; video games</topic><topic>Decision making</topic><topic>Distance learning</topic><topic>Dynamic programming</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Internet of Things</topic><topic>Liapunov functions</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Performance indices</topic><topic>Pursuit-evasion games</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Zifeng</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Kang, Weijie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Zifeng</au><au>He, Bing</au><au>Hu, Chen</au><au>Zhang, Xiaobo</au><au>Kang, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>3583</spage><pages>3583-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11213583</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-11, Vol.11 (21), p.3583
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2734621736
source Publicly Available Content Database
subjects Algorithms
Approximation
Communication
Communications networks
Computer & video games
Decision making
Distance learning
Dynamic programming
Equilibrium
Game theory
Games
Internet of Things
Liapunov functions
Multi-agent systems
Multiagent systems
Navigation systems
Neural networks
Performance indices
Pursuit-evasion games
Teaching methods
title Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Adaptive%20Dynamic%20Programming-Based%20Solution%20of%20Networked%20Multiple-Pursuer%20and%20Single-Evader%20Game&rft.jtitle=Electronics%20(Basel)&rft.au=Gong,%20Zifeng&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=3583&rft.pages=3583-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11213583&rft_dat=%3Cgale_proqu%3EA745598059%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734621736&rft_id=info:pmid/&rft_galeid=A745598059&rfr_iscdi=true