Loading…
Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game
This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as...
Saved in:
Published in: | Electronics (Basel) 2022-11, Vol.11 (21), p.3583 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3 |
container_end_page | |
container_issue | 21 |
container_start_page | 3583 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Gong, Zifeng He, Bing Hu, Chen Zhang, Xiaobo Kang, Weijie |
description | This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games. |
doi_str_mv | 10.3390/electronics11213583 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2734621736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745598059</galeid><sourcerecordid>A745598059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</originalsourceid><addsrcrecordid>eNptUU1PwzAMrRBITGO_gEslzh35aJvmOMYYSINNYvfKy5wpo01G0g7t3xM0DhzwxfbTe8-2nCS3lIw5l-QeG1Sdd9aoQCmjvKj4RTJgRMhMMsku_9TXySiEPYkhKa84GSS7pW2MxXSyhUNnjpg-niy0RqUr73Ye2tbYXfYAAbfpu2v6zjibOp2-Yffl_EdEX_umM4cGs1XvQ48-BRupURWh2RG2EZlDizfJlYYm4Og3D5P102w9fc4Wy_nLdLLIFC9plwnC8jyHohJ5JQVuCIDAQm8UFlxoLTRnVG-2ahN7qUCAAk5oWRZMQsU1HyZ3Z9uDd589hq7eu97bOLFmguclo4KXkTU-s3bQYG2sdp2PTipuG093FrWJ-ETkRSErUsgo4GeB8i4Ej7o-eNOCP9WU1D9PqP95Av8GhWJ-OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734621736</pqid></control><display><type>article</type><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><source>Publicly Available Content Database</source><creator>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</creator><creatorcontrib>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</creatorcontrib><description>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11213583</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Approximation ; Communication ; Communications networks ; Computer & video games ; Decision making ; Distance learning ; Dynamic programming ; Equilibrium ; Game theory ; Games ; Internet of Things ; Liapunov functions ; Multi-agent systems ; Multiagent systems ; Navigation systems ; Neural networks ; Performance indices ; Pursuit-evasion games ; Teaching methods</subject><ispartof>Electronics (Basel), 2022-11, Vol.11 (21), p.3583</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</citedby><cites>FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734621736/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734621736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gong, Zifeng</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Kang, Weijie</creatorcontrib><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><title>Electronics (Basel)</title><description>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Communication</subject><subject>Communications networks</subject><subject>Computer & video games</subject><subject>Decision making</subject><subject>Distance learning</subject><subject>Dynamic programming</subject><subject>Equilibrium</subject><subject>Game theory</subject><subject>Games</subject><subject>Internet of Things</subject><subject>Liapunov functions</subject><subject>Multi-agent systems</subject><subject>Multiagent systems</subject><subject>Navigation systems</subject><subject>Neural networks</subject><subject>Performance indices</subject><subject>Pursuit-evasion games</subject><subject>Teaching methods</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUU1PwzAMrRBITGO_gEslzh35aJvmOMYYSINNYvfKy5wpo01G0g7t3xM0DhzwxfbTe8-2nCS3lIw5l-QeG1Sdd9aoQCmjvKj4RTJgRMhMMsku_9TXySiEPYkhKa84GSS7pW2MxXSyhUNnjpg-niy0RqUr73Ye2tbYXfYAAbfpu2v6zjibOp2-Yffl_EdEX_umM4cGs1XvQ48-BRupURWh2RG2EZlDizfJlYYm4Og3D5P102w9fc4Wy_nLdLLIFC9plwnC8jyHohJ5JQVuCIDAQm8UFlxoLTRnVG-2ahN7qUCAAk5oWRZMQsU1HyZ3Z9uDd589hq7eu97bOLFmguclo4KXkTU-s3bQYG2sdp2PTipuG093FrWJ-ETkRSErUsgo4GeB8i4Ej7o-eNOCP9WU1D9PqP95Av8GhWJ-OA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Gong, Zifeng</creator><creator>He, Bing</creator><creator>Hu, Chen</creator><creator>Zhang, Xiaobo</creator><creator>Kang, Weijie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221101</creationdate><title>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</title><author>Gong, Zifeng ; He, Bing ; Hu, Chen ; Zhang, Xiaobo ; Kang, Weijie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Communication</topic><topic>Communications networks</topic><topic>Computer & video games</topic><topic>Decision making</topic><topic>Distance learning</topic><topic>Dynamic programming</topic><topic>Equilibrium</topic><topic>Game theory</topic><topic>Games</topic><topic>Internet of Things</topic><topic>Liapunov functions</topic><topic>Multi-agent systems</topic><topic>Multiagent systems</topic><topic>Navigation systems</topic><topic>Neural networks</topic><topic>Performance indices</topic><topic>Pursuit-evasion games</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Zifeng</creatorcontrib><creatorcontrib>He, Bing</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Zhang, Xiaobo</creatorcontrib><creatorcontrib>Kang, Weijie</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Zifeng</au><au>He, Bing</au><au>Hu, Chen</au><au>Zhang, Xiaobo</au><au>Kang, Weijie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>3583</spage><pages>3583-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper presents a new scheme for the online solution of a networked multi-agent pursuit–evasion game based on an online adaptive dynamic programming method. As a multi-agent in the game can form an Internet of Things (IoT) system, by incorporating the relative distance and the control energy as the performance index, the expression of the policies when the agents reach the Nash equilibrium is obtained and proved by the minmax principle. By constructing a Lyapunov function, the capture conditions of the game are obtained and discussed. In order to enable each agent to obtain the policy for reaching the Nash equilibrium in real time, the online adaptive dynamic programming method is used to solve the game problem. Furthermore, the parameters of the neural network are fitted by value function approximation, which avoids the difficulties of solving the Hamilton-Jacobi–Isaacs equation, and the numerical solution of the Nash equilibrium is obtained. Simulation results depict the feasibility of the proposed method for use on multi-agent pursuit–evasion games.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11213583</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-11, Vol.11 (21), p.3583 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2734621736 |
source | Publicly Available Content Database |
subjects | Algorithms Approximation Communication Communications networks Computer & video games Decision making Distance learning Dynamic programming Equilibrium Game theory Games Internet of Things Liapunov functions Multi-agent systems Multiagent systems Navigation systems Neural networks Performance indices Pursuit-evasion games Teaching methods |
title | Online Adaptive Dynamic Programming-Based Solution of Networked Multiple-Pursuer and Single-Evader Game |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A50%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Adaptive%20Dynamic%20Programming-Based%20Solution%20of%20Networked%20Multiple-Pursuer%20and%20Single-Evader%20Game&rft.jtitle=Electronics%20(Basel)&rft.au=Gong,%20Zifeng&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=3583&rft.pages=3583-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11213583&rft_dat=%3Cgale_proqu%3EA745598059%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-702444a5874897eb0aa7e5fbce537ff7f321fbdcbe539ca7aca30166529a83f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734621736&rft_id=info:pmid/&rft_galeid=A745598059&rfr_iscdi=true |