Loading…

Testing Procedure for Laboratory Scale Semi Cryogenic Combustion Chamber of LPRE with Problems Faced and Lessons Learned

Design, development, and testing of LPRE (Liquid Propellant Rocket Engine) are difficult and expensive tasks. Prior to full-scale design, it is indispensable to optimize important parameters at sub-scale. Propellants flow rates are low for a sub-scale or laboratory scale combustion chambers. It is h...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal science 2022-11, Vol.31 (6), p.2171-2177
Main Authors: Khan, Taj Wali, Qamar, Ihtzaz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Design, development, and testing of LPRE (Liquid Propellant Rocket Engine) are difficult and expensive tasks. Prior to full-scale design, it is indispensable to optimize important parameters at sub-scale. Propellants flow rates are low for a sub-scale or laboratory scale combustion chambers. It is hard to satisfy chamber cooling and chill feed lines quickly with low flow rates of propellants. This paper proposes a detailed procedure for testing of a laboratory scale semi-cryogenic combustion chamber. Many tests were conducted with a small scale adjustable length combustion chamber. The injection head of the chamber was interchangeable. Liquid-liquid pressure swirl injector and like impinging injectors were used with two different injection heads. Liquid oxygen and kerosene were used as oxidizer and fuel, respectively. Oxidizer to fuel mixing ratio was 0.29–0.45 and the total propellant mass flow rate was 0.06–0.1 kg/s. Problems were faced during testing, including, explosion in the combustion chamber, fuel injector blockage, unstable combustion, incomplete chilling and blockage of cooling water channel, etc. A detailed procedure is designed on the basis of the lessons learned which was experimentally proved.
ISSN:1003-2169
1993-033X
DOI:10.1007/s11630-022-1617-6