Loading…
Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit
In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Aba...
Saved in:
Published in: | Processes 2022-11, Vol.10 (11), p.2245 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3 |
container_end_page | |
container_issue | 11 |
container_start_page | 2245 |
container_title | Processes |
container_volume | 10 |
creator | Cevher, Elçin Yeşiloğlu Yıldırım, Demet |
description | In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg–Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R2, RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used three inputs: the highest R2 value (0.90) and the lowest square of the root error (0.018), and the MAE (0.093). |
doi_str_mv | 10.3390/pr10112245 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2734709616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744993329</galeid><sourcerecordid>A744993329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3</originalsourceid><addsrcrecordid>eNptkcFKAzEQhhdRsNRefIKAN6F1k-xummOpVoVWC9rzkiaTNnW7WZMs4hv42KatUAUzhBlmvv-fwyTJJU4HlPL0pnE4xZiQLD9JOoQQ1ucMs9Nf9XnS836TxscxHeZFJ_laeFOv0MgFo400okJP0Lp9Ch_WvaFR01RGimBsjUyNZlZBtVOENaAZyLWo47RCc2cbiCbgkdVoaoXaQXPrzV4paoVegnViBeg2-u-bEZyDcGjiWhMukjMtKg-9n9xNFpO71_FDf_p8_zgeTfuScBL6TCxVnnHNBVGKpZwXSnMOghYk4zwXkPI8w0uWxq-F5FRGKhtixtkQoFC0m1wdfBtn31vwodzY1tVxZUkYzaJlgYsjtRIVlKbWNjght8bLcsSyuIlSwiM1-IeKoWBrpK1Bm9j_I7g-CKSz3jvQZePMVrjPEqfl7obl8Yb0G86YjfY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734709616</pqid></control><display><type>article</type><title>Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Cevher, Elçin Yeşiloğlu ; Yıldırım, Demet</creator><creatorcontrib>Cevher, Elçin Yeşiloğlu ; Yıldırım, Demet</creatorcontrib><description>In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg–Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R2, RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used three inputs: the highest R2 value (0.90) and the lowest square of the root error (0.018), and the MAE (0.093).</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10112245</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Apple ; Artificial neural networks ; Back propagation ; Back propagation networks ; Cold storage ; Design ; Economic analysis ; Economic models ; Energy ; Energy value ; Fatty acids ; Fruits ; Mechanical properties ; Multilayers ; Neural networks ; Pears ; Post-harvest decay ; Rupture ; Software ; Vegetables</subject><ispartof>Processes, 2022-11, Vol.10 (11), p.2245</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3</citedby><cites>FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3</cites><orcidid>0000-0001-9062-923X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2734709616/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2734709616?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569,74872</link.rule.ids></links><search><creatorcontrib>Cevher, Elçin Yeşiloğlu</creatorcontrib><creatorcontrib>Yıldırım, Demet</creatorcontrib><title>Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit</title><title>Processes</title><description>In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg–Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R2, RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used three inputs: the highest R2 value (0.90) and the lowest square of the root error (0.018), and the MAE (0.093).</description><subject>Algorithms</subject><subject>Apple</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Back propagation networks</subject><subject>Cold storage</subject><subject>Design</subject><subject>Economic analysis</subject><subject>Economic models</subject><subject>Energy</subject><subject>Energy value</subject><subject>Fatty acids</subject><subject>Fruits</subject><subject>Mechanical properties</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Pears</subject><subject>Post-harvest decay</subject><subject>Rupture</subject><subject>Software</subject><subject>Vegetables</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkcFKAzEQhhdRsNRefIKAN6F1k-xummOpVoVWC9rzkiaTNnW7WZMs4hv42KatUAUzhBlmvv-fwyTJJU4HlPL0pnE4xZiQLD9JOoQQ1ucMs9Nf9XnS836TxscxHeZFJ_laeFOv0MgFo400okJP0Lp9Ch_WvaFR01RGimBsjUyNZlZBtVOENaAZyLWo47RCc2cbiCbgkdVoaoXaQXPrzV4paoVegnViBeg2-u-bEZyDcGjiWhMukjMtKg-9n9xNFpO71_FDf_p8_zgeTfuScBL6TCxVnnHNBVGKpZwXSnMOghYk4zwXkPI8w0uWxq-F5FRGKhtixtkQoFC0m1wdfBtn31vwodzY1tVxZUkYzaJlgYsjtRIVlKbWNjght8bLcsSyuIlSwiM1-IeKoWBrpK1Bm9j_I7g-CKSz3jvQZePMVrjPEqfl7obl8Yb0G86YjfY</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Cevher, Elçin Yeşiloğlu</creator><creator>Yıldırım, Demet</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9062-923X</orcidid></search><sort><creationdate>20221101</creationdate><title>Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit</title><author>Cevher, Elçin Yeşiloğlu ; Yıldırım, Demet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Apple</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Back propagation networks</topic><topic>Cold storage</topic><topic>Design</topic><topic>Economic analysis</topic><topic>Economic models</topic><topic>Energy</topic><topic>Energy value</topic><topic>Fatty acids</topic><topic>Fruits</topic><topic>Mechanical properties</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Pears</topic><topic>Post-harvest decay</topic><topic>Rupture</topic><topic>Software</topic><topic>Vegetables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cevher, Elçin Yeşiloğlu</creatorcontrib><creatorcontrib>Yıldırım, Demet</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cevher, Elçin Yeşiloğlu</au><au>Yıldırım, Demet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit</atitle><jtitle>Processes</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>10</volume><issue>11</issue><spage>2245</spage><pages>2245-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>In the study, rupture energy values of Deveci and Abate Fetel pear fruits were predicted using artificial neural network (ANN). This research aimed to develop a simple, accurate, rapid, and economic model for harvest/post-harvest loss of efficiently predicting rupture energy values of Deveci and Abate Fetel pear fruits. The breaking energy of the pears was examined in terms of storage time and loading position. The experiments were carried out in two stages, with samples kept in cold storage immediately after harvest and 30 days later. Rupture energy values were estimated using four different single and multi-layer ANN models. Four different model results obtained using Levenberg–Marquardt, Scaled Conjugate Gradient, and resilient backpropagation training algorithms were compared with the calculated values. Statistical parameters such as R2, RMSE, MAE, and MSE were used to evaluate the performance of the methods. The best-performing model was obtained in network structure 5-1 that used three inputs: the highest R2 value (0.90) and the lowest square of the root error (0.018), and the MAE (0.093).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10112245</doi><orcidid>https://orcid.org/0000-0001-9062-923X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-11, Vol.10 (11), p.2245 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2734709616 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Apple Artificial neural networks Back propagation Back propagation networks Cold storage Design Economic analysis Economic models Energy Energy value Fatty acids Fruits Mechanical properties Multilayers Neural networks Pears Post-harvest decay Rupture Software Vegetables |
title | Using Artificial Neural Network Application in Modeling the Mechanical Properties of Loading Position and Storage Duration of Pear Fruit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Artificial%20Neural%20Network%20Application%20in%20Modeling%20the%20Mechanical%20Properties%20of%20Loading%20Position%20and%20Storage%20Duration%20of%20Pear%20Fruit&rft.jtitle=Processes&rft.au=Cevher,%20El%C3%A7in%20Ye%C5%9Filo%C4%9Flu&rft.date=2022-11-01&rft.volume=10&rft.issue=11&rft.spage=2245&rft.pages=2245-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10112245&rft_dat=%3Cgale_proqu%3EA744993329%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-7abd549f9a2dd70996df99ea3624995ae09541b701b7fac93cd704817978ee6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2734709616&rft_id=info:pmid/&rft_galeid=A744993329&rfr_iscdi=true |