Loading…
A High-Throughput Screening Procedure (Py-Fe3+) for Enhancing Ethanol Production by Saccharomyces cerevisiae Using ARTP Random Mutagenesis
Saccharomyces cerevisiae is an important microbial organization involved in ethanol synthesis. Mutant strains that can withstand multiple pressures during this process are critical to the industrial development of biofuels. In this study, a dual high-throughput screening method of Triphenyl-2H-tetra...
Saved in:
Published in: | Processes 2022-11, Vol.10 (11), p.2186 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Saccharomyces cerevisiae is an important microbial organization involved in ethanol synthesis. Mutant strains that can withstand multiple pressures during this process are critical to the industrial development of biofuels. In this study, a dual high-throughput screening method of Triphenyl-2H-tetrazoliumchloride (TTC)-based macroscopic observation and the reaction of ferric nitrate with pyruvate (or pyruvate radical ion) in fermentation broth was used. Using this, an S. cerevisiae mutant library that could tolerate 381 g/L sucrose was established by ARTP random mutation and adaptive evolution to select the best strain; its ethanol yield was increased by an additional 20.48%; and the sucrose utilization rate was 81.64%. This method is specific to the selection of strains with increased ethanol production. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr10112186 |