Loading…

Discovery of the correlation between the suspended membrane capacitance and adherent morphology of single cells enriching from clinical pleural effusion revealed by a microfluidic impedance flow cytometry

Cellular adherent morphology and suspended electrical property are two important intrinsic biophysical features of single cells in two states. However, few studies reported their relationship due to lacking systematic methods. Here, we proposed a toolchain for enriching, proliferating single cells f...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2022-11, Vol.371, p.132487, Article 132487
Main Authors: Luan, Xiaofeng, Li, Yuang, Zhao, Haiping, Sun, Sheng, Fan, Yuanyuan, Zhang, Wenchang, Zhang, Lingqian, Li, Mingxiao, Wang, Jinghui, Zhi, Tian, Zhang, Lina, Zhao, Yang, Huang, Chengjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellular adherent morphology and suspended electrical property are two important intrinsic biophysical features of single cells in two states. However, few studies reported their relationship due to lacking systematic methods. Here, we proposed a toolchain for enriching, proliferating single cells from pleural effusions (PEs), and characterizing their adherent morphologies and suspended inherent electrical properties. Our 3D cell sieving device was employed to enrich rare tumor cells from every 50 mL clinical PEs. After proliferated, ten samples were enrolled, whose cells' adherent morphologies were quantified with the elongation ratio (Er). Our microfluidic impedance flow cytometry was developed to characterize ~65,400 suspended single cells' electrical properties (e.g., Csm). Subsequently, we experimentally found that the Csm of 5 spindle-like (mainly Er> 2) samples were all quantified as focused above 1.5 μF/cm2, whereas others' were all focused around 1–1.5 μF/cm2 for 5 round-like (mainly Er≤ 2) samples. Spearman rhos were introduced to further quantify this potential correlation from aspects of proportions (Csm> 1.5 μF/cm2, Er> 2), average, and median, noting as 0.758 (p = 0.011), 0.760 (p = 0.011), and 0.744 (p = 0.014), respectively. Those results revealed a significant correlation between single cells' Er and Csm─which means that the underlying correlation between cells' two label-free biophysical properties presented in two states was discovered. •Systematically 3D sieved, proliferated single cells from PEs, and electrical characterized.•Er quantified for cells' adherent elongation ratio.•Our high-throughput impedance flow cytometry characterized ~65,400 primary single cells' suspended membrane capacitance.•The correlation between cells' Er and membrane capacitance was revealed and involved adherent information in suspension.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2022.132487