Loading…
Enhanced Removal of Low Concentrations of Anti-inflammatory Drugs in Water Using Fe-MOF Derived Carbon Treated by Acidic Leaching: Characterization and Performance
In this work, the MIL-101(Fe) derived carbon prepared by direct carbonization under N 2 atmosphere followed by acidic treatment (TC-MIL-101(Fe)) was evaluated as an adsorbent of low concentrations of naproxen (NPX) in an aqueous solution. The adsorption performance of TC-MIL-101(Fe) was compared wit...
Saved in:
Published in: | Journal of inorganic and organometallic polymers and materials 2022-11, Vol.32 (11), p.4204-4215 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the MIL-101(Fe) derived carbon prepared by direct carbonization under N
2
atmosphere followed by acidic treatment (TC-MIL-101(Fe)) was evaluated as an adsorbent of low concentrations of naproxen (NPX) in an aqueous solution. The adsorption performance of TC-MIL-101(Fe) was compared with its analog without acidic treatment (C-MIL-101(Fe) and pristine MIL-101(Fe). The prepared materials were characterized by X-ray diffraction (XRD), nitrogen physisorption, scanning electron microscopy with energy dispersive spectroscopy (SEM–EDS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TC-MIL-101(Fe) improved its textural and physicochemical properties. The increase of specific surface area, broad pore size distribution, and low residual level of Fe particles, and graphitization index turned this material into a potential adsorbent of pharmaceutical compounds. The NPX adsorption experiments onto TC-MIL-101(Fe) showed complete removal in 15 min, and 63.30 mg/g adsorption capacity in equilibrium compared to 22.94, and 22.72 mg/g achieved using pristine MIL-101(Fe) and C-MIL-101(Fe). The NPX adsorption using MIL-101(Fe) and their derived carbon materials was associated with a pseudo-second order (R
2
≥ 0.995) and Langmuir (R
2
≥ 0.938) models. Moreover, the thermodynamic parameters were calculated, suggesting the spontaneous and exothermic adsorption mechanism. These results evidenced the potential application of TC-MIL-101(Fe) adsorbent associated with its good textural properties and modulable porosity. |
---|---|
ISSN: | 1574-1443 1574-1451 |
DOI: | 10.1007/s10904-022-02426-6 |