Loading…

Bilingual Corpus-based Hybrid POS Tagger for Low Resource Tamil Language: A Statistical approach

In India, most of the Science and Technology resources available are in English. Developing an Automatic Language Translation Engine from English (source language) to Tamil (target language) is very essential for the people who need to get technical resources in their native language. The challenges...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2022-01, Vol.43 (6), p.8329-8348
Main Authors: Senthamizh Selvi, S., Anitha, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In India, most of the Science and Technology resources available are in English. Developing an Automatic Language Translation Engine from English (source language) to Tamil (target language) is very essential for the people who need to get technical resources in their native language. The challenges in designing such engines using Natural Language Processing (NLP) tools include Lexical, Structural, and Syntax level ambiguity. To solve these challenges, the development of a Part-Of-Speech (POS) tagger is essential. The Verb-Framed languages like Tamil, Japanese, and many languages in Romance, Semitic, and Mayan languages families have high morphological richness but lack either a large volume of annotated corpora or manually constructed linguistic resources for building POS tagger. Moreover, the Tamil Language has a low resource, high word sense ambiguity, and word-free order form giving rise to challenges in designing Tamil POS taggers. In this paper, we postulate a Hybrid POS tagger algorithm for Tamil Language using Cross-Lingual Transformation Learning Techniques. It is a novel Mining-based algorithm (MT), which finds equivalent words of Tamil in English on less volume of English-Tamil bilingual unannotated parallel corpus. To enhance the performance of MT, we developed Tamil language-specific auxiliary algorithms such as Keyword-based tagging algorithm (KT) and Verb pattern-based tagging algorithm (VT). We also developed a Unique pair occurrence-tagging algorithm (UT) to find the one-time occurrence of Tamil-English pair words. Our experiments show that by improving Context-based Bilingual Corpus to Bilingual parallel corpus and after leaving one-time occurrence words, the proposed Hybrid POS tagger can predict 81.15% words, with 73.51% accuracy and 90.50% precision. Evaluations prove our algorithms can generate language resources, which can improve the performance of NLP tasks in Tamil.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-221278