Loading…
SN 2022ann: A type Icn supernova from a dwarf galaxy that reveals helium in its circumstellar environment
We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of 800 km/s; slower than other SN...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present optical and near-infrared (NIR) observations of the Type Icn supernova (SN Icn) 2022ann, the fifth member of its newly identified class of SNe. Its early optical spectra are dominated by narrow carbon and oxygen P-Cygni features with absorption velocities of 800 km/s; slower than other SNe Icn and indicative of interaction with a dense, H/He-poor circumstellar medium (CSM) that is outflowing slower than a typical Wolf-Rayet wind velocity of \(>\)1000 km/s. We identify helium in NIR spectra obtained two weeks after maximum and in optical spectra at three weeks, demonstrating that the CSM is not fully devoid of helium. We never detect broad spectral features from SN ejecta, including in spectra extending to the nebular phase, a unique characteristic among SNe~Icn. Compared to other SNe Icn, SN 2022ann has a low luminosity, with a peak o-band absolute magnitude of -17.7, and evolves slowly. We model the bolometric light curve and find it is well-described by 1.7 M_Sun of SN ejecta interacting with 0.2 M_sun of CSM. We place an upper limit of 0.04 M_Sun of Ni56 synthesized in the explosion. The host galaxy is a dwarf galaxy with a stellar mass of 10^7.34 M_Sun (implied metallicity of log(Z/Z_Sun) \(\approx\) 0.10) and integrated star-formation rate of log(SFR) = -2.20 M_sun/yr; both lower than 97\% of the galaxies observed to produce core-collapse supernovae, although consistent with star-forming galaxies on the galaxy Main Sequence. The low CSM velocity, nickel and ejecta masses, and likely low-metallicity environment disfavour a single Wolf-Rayet progenitor star. Instead, a binary companion star is likely required to adequately strip the progenitor before explosion and produce a low-velocity outflow. The low CSM velocity may be indicative of the outer Lagrangian points in the stellar binary progenitor, rather than from the escape velocity of a single Wolf-Rayet-like massive star. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2211.05134 |