Loading…
Topography of bent crystals with microradian resolution in one dimension
Optimum performance in x-ray imaging and spectroscopy of plasmas with bent crystals is achievable only when the crystal reflects the x rays theoretically perfectly across its entire surface. However, typical thin quartz (101̄1) crystal samples kept flat by direct attachment to a flat substrate refle...
Saved in:
Published in: | Review of scientific instruments 2022-11, Vol.93 (11), p.113538-113538 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optimum performance in x-ray imaging and spectroscopy of plasmas with bent crystals is achievable only when the crystal reflects the x rays theoretically perfectly across its entire surface. However, typical thin quartz (101̄1) crystal samples kept flat by direct attachment to a flat substrate reflect 8 keV x rays differently across their surface, on a scale comparable to the ideal rocking curve. Additional processing improves the uniformity. Irradiation of flat crystals with collimated, monochromatic x rays in rocking curve topography shows such problems directly, with microradian resolution. Nonuniform x-ray reflection is more difficult to document for strongly bent crystals because, then, monochromatic, collimated x rays satisfy the Bragg condition only along a narrow stripe that may be too narrow to resolve with the available cameras. However, it can be resolved with a knife edge that moves through the reflected x rays with the necessary spatial precision as demonstrated here for a bent silicon crystal. This shows qualitatively similar imperfections in the reflection as flat quartz and as the bent quartz analyzers reported on previously with lower resolution. |
---|---|
ISSN: | 0034-6748 1089-7623 |
DOI: | 10.1063/5.0098994 |