Loading…
An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients
Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is eq...
Saved in:
Published in: | Proceedings of the Steklov Institute of Mathematics 2022-08, Vol.317 (Suppl 1), p.S16-S26 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c198t-4fd1aaf41b907aaa0bf813efa7f595cd14e2db706a2c64612661a00c08e7245a3 |
container_end_page | S26 |
container_issue | Suppl 1 |
container_start_page | S16 |
container_title | Proceedings of the Steklov Institute of Mathematics |
container_volume | 317 |
creator | Azamov, A. A. Begaliev, A. O. |
description | Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo’s theorem on the uniqueness of the solution to the Cauchy problem is also given. |
doi_str_mv | 10.1134/S0081543822030026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736325929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736325929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-4fd1aaf41b907aaa0bf813efa7f595cd14e2db706a2c64612661a00c08e7245a3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHPq5Pn7h5LqQ-oKLSel3Q3sSlt0iZZrP_e1AoexMMwA99jZj6ErgncEsL43QygIoKzilJgAFSeoAERjBSVBHGKBge4OODn6CLGFQAXJa8HyI4cnuxtTNq1Gs-X2ge9wcp1ufBouw1-bzcqaTzz6z5Z7_CzTkvfYeMDVvjVKGPwZNerb-zDpiUee5es630f86iNsa3VLsVLdGbUOuqrnz5Eb_eT-fixmL48PI1H06IldZUKbjqilOFkUUOplIKFqQjTRpVG1KLtCNe0W5QgFW0ll4RKSRRAC5UuKReKDdHN0Tffvut1TM3K98HllQ0tmWRU1LTOLHJktcHHGLRptiE_Gj4bAs0h0eZPollDj5qYue5dh1_n_0Vf3Nl4Gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736325929</pqid></control><display><type>article</type><title>An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients</title><source>Springer Link</source><creator>Azamov, A. A. ; Begaliev, A. O.</creator><creatorcontrib>Azamov, A. A. ; Begaliev, A. O.</creatorcontrib><description>Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo’s theorem on the uniqueness of the solution to the Cauchy problem is also given.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543822030026</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Cauchy problems ; Coefficients ; Equivalence ; Existence theorems ; Integral equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Pfaff equation ; Uniqueness theorems</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S16-S26</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-4fd1aaf41b907aaa0bf813efa7f595cd14e2db706a2c64612661a00c08e7245a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><creatorcontrib>Azamov, A. A.</creatorcontrib><creatorcontrib>Begaliev, A. O.</creatorcontrib><title>An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo’s theorem on the uniqueness of the solution to the Cauchy problem is also given.</description><subject>Cauchy problems</subject><subject>Coefficients</subject><subject>Equivalence</subject><subject>Existence theorems</subject><subject>Integral equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Pfaff equation</subject><subject>Uniqueness theorems</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHPq5Pn7h5LqQ-oKLSel3Q3sSlt0iZZrP_e1AoexMMwA99jZj6ErgncEsL43QygIoKzilJgAFSeoAERjBSVBHGKBge4OODn6CLGFQAXJa8HyI4cnuxtTNq1Gs-X2ge9wcp1ufBouw1-bzcqaTzz6z5Z7_CzTkvfYeMDVvjVKGPwZNerb-zDpiUee5es630f86iNsa3VLsVLdGbUOuqrnz5Eb_eT-fixmL48PI1H06IldZUKbjqilOFkUUOplIKFqQjTRpVG1KLtCNe0W5QgFW0ll4RKSRRAC5UuKReKDdHN0Tffvut1TM3K98HllQ0tmWRU1LTOLHJktcHHGLRptiE_Gj4bAs0h0eZPollDj5qYue5dh1_n_0Vf3Nl4Gw</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Azamov, A. A.</creator><creator>Begaliev, A. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients</title><author>Azamov, A. A. ; Begaliev, A. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-4fd1aaf41b907aaa0bf813efa7f595cd14e2db706a2c64612661a00c08e7245a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cauchy problems</topic><topic>Coefficients</topic><topic>Equivalence</topic><topic>Existence theorems</topic><topic>Integral equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Pfaff equation</topic><topic>Uniqueness theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azamov, A. A.</creatorcontrib><creatorcontrib>Begaliev, A. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azamov, A. A.</au><au>Begaliev, A. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>317</volume><issue>Suppl 1</issue><spage>S16</spage><epage>S26</epage><pages>S16-S26</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>Pfaff equations with continuous coefficients are considered. A specific Cauchy problem for a Pfaff equation is transformed to an equivalent system of integral equations of a special type, which is overdetermined. It is shown that in the case of smooth coefficients the consistency of the system is equivalent to the Frobenius integrability criterion. A theorem on the existence of a solution for the obtained type of integral equations is presented. The solution is found by the Euler polygonal method, which allows one to construct an approximate solution of the Pfaff equation. An analog of Nagumo’s theorem on the uniqueness of the solution to the Cauchy problem is also given.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543822030026</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0081-5438 |
ispartof | Proceedings of the Steklov Institute of Mathematics, 2022-08, Vol.317 (Suppl 1), p.S16-S26 |
issn | 0081-5438 1531-8605 |
language | eng |
recordid | cdi_proquest_journals_2736325929 |
source | Springer Link |
subjects | Cauchy problems Coefficients Equivalence Existence theorems Integral equations Mathematical analysis Mathematics Mathematics and Statistics Pfaff equation Uniqueness theorems |
title | An Existence Theorem and an Approximate Solution Method for a Pfaff Equation with Continuous Coefficients |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Existence%20Theorem%20and%20an%20Approximate%20Solution%20Method%20for%20a%20Pfaff%20Equation%20with%20Continuous%20Coefficients&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Azamov,%20A.%20A.&rft.date=2022-08-01&rft.volume=317&rft.issue=Suppl%201&rft.spage=S16&rft.epage=S26&rft.pages=S16-S26&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543822030026&rft_dat=%3Cproquest_cross%3E2736325929%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c198t-4fd1aaf41b907aaa0bf813efa7f595cd14e2db706a2c64612661a00c08e7245a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736325929&rft_id=info:pmid/&rfr_iscdi=true |