Loading…
SPE: Symmetrical Prompt Enhancement for Fact Probing
Pretrained language models (PLMs) have been shown to accumulate factual knowledge during pretrainingng (Petroni et al., 2019). Recent works probe PLMs for the extent of this knowledge through prompts either in discrete or continuous forms. However, these methods do not consider symmetry of the task:...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Yiyuan Tong Che Wang, Yezhen Jiang, Zhengbao Xiong, Caiming Chaturvedi, Snigdha |
description | Pretrained language models (PLMs) have been shown to accumulate factual knowledge during pretrainingng (Petroni et al., 2019). Recent works probe PLMs for the extent of this knowledge through prompts either in discrete or continuous forms. However, these methods do not consider symmetry of the task: object prediction and subject prediction. In this work, we propose Symmetrical Prompt Enhancement (SPE), a continuous prompt-based method for factual probing in PLMs that leverages the symmetry of the task by constructing symmetrical prompts for subject and object prediction. Our results on a popular factual probing dataset, LAMA, show significant improvement of SPE over previous probing methods. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736486917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736486917</sourcerecordid><originalsourceid>FETCH-proquest_journals_27364869173</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCQ5wtVIIrszNTS0pykxOzFEIKMrPLShRcM3LSMxLTs1NzStRSMsvUnBLTC4BySVl5qXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbmxmYmFmaWhuTFxqgAHKDQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736486917</pqid></control><display><type>article</type><title>SPE: Symmetrical Prompt Enhancement for Fact Probing</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Li, Yiyuan ; Tong Che ; Wang, Yezhen ; Jiang, Zhengbao ; Xiong, Caiming ; Chaturvedi, Snigdha</creator><creatorcontrib>Li, Yiyuan ; Tong Che ; Wang, Yezhen ; Jiang, Zhengbao ; Xiong, Caiming ; Chaturvedi, Snigdha</creatorcontrib><description>Pretrained language models (PLMs) have been shown to accumulate factual knowledge during pretrainingng (Petroni et al., 2019). Recent works probe PLMs for the extent of this knowledge through prompts either in discrete or continuous forms. However, these methods do not consider symmetry of the task: object prediction and subject prediction. In this work, we propose Symmetrical Prompt Enhancement (SPE), a continuous prompt-based method for factual probing in PLMs that leverages the symmetry of the task by constructing symmetrical prompts for subject and object prediction. Our results on a popular factual probing dataset, LAMA, show significant improvement of SPE over previous probing methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Symmetry</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2736486917?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Tong Che</creatorcontrib><creatorcontrib>Wang, Yezhen</creatorcontrib><creatorcontrib>Jiang, Zhengbao</creatorcontrib><creatorcontrib>Xiong, Caiming</creatorcontrib><creatorcontrib>Chaturvedi, Snigdha</creatorcontrib><title>SPE: Symmetrical Prompt Enhancement for Fact Probing</title><title>arXiv.org</title><description>Pretrained language models (PLMs) have been shown to accumulate factual knowledge during pretrainingng (Petroni et al., 2019). Recent works probe PLMs for the extent of this knowledge through prompts either in discrete or continuous forms. However, these methods do not consider symmetry of the task: object prediction and subject prediction. In this work, we propose Symmetrical Prompt Enhancement (SPE), a continuous prompt-based method for factual probing in PLMs that leverages the symmetry of the task by constructing symmetrical prompts for subject and object prediction. Our results on a popular factual probing dataset, LAMA, show significant improvement of SPE over previous probing methods.</description><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCQ5wtVIIrszNTS0pykxOzFEIKMrPLShRcM3LSMxLTs1NzStRSMsvUnBLTC4BySVl5qXzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kbmxmYmFmaWhuTFxqgAHKDQN</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Li, Yiyuan</creator><creator>Tong Che</creator><creator>Wang, Yezhen</creator><creator>Jiang, Zhengbao</creator><creator>Xiong, Caiming</creator><creator>Chaturvedi, Snigdha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221114</creationdate><title>SPE: Symmetrical Prompt Enhancement for Fact Probing</title><author>Li, Yiyuan ; Tong Che ; Wang, Yezhen ; Jiang, Zhengbao ; Xiong, Caiming ; Chaturvedi, Snigdha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27364869173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yiyuan</creatorcontrib><creatorcontrib>Tong Che</creatorcontrib><creatorcontrib>Wang, Yezhen</creatorcontrib><creatorcontrib>Jiang, Zhengbao</creatorcontrib><creatorcontrib>Xiong, Caiming</creatorcontrib><creatorcontrib>Chaturvedi, Snigdha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yiyuan</au><au>Tong Che</au><au>Wang, Yezhen</au><au>Jiang, Zhengbao</au><au>Xiong, Caiming</au><au>Chaturvedi, Snigdha</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SPE: Symmetrical Prompt Enhancement for Fact Probing</atitle><jtitle>arXiv.org</jtitle><date>2022-11-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Pretrained language models (PLMs) have been shown to accumulate factual knowledge during pretrainingng (Petroni et al., 2019). Recent works probe PLMs for the extent of this knowledge through prompts either in discrete or continuous forms. However, these methods do not consider symmetry of the task: object prediction and subject prediction. In this work, we propose Symmetrical Prompt Enhancement (SPE), a continuous prompt-based method for factual probing in PLMs that leverages the symmetry of the task by constructing symmetrical prompts for subject and object prediction. Our results on a popular factual probing dataset, LAMA, show significant improvement of SPE over previous probing methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2736486917 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Symmetry |
title | SPE: Symmetrical Prompt Enhancement for Fact Probing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SPE:%20Symmetrical%20Prompt%20Enhancement%20for%20Fact%20Probing&rft.jtitle=arXiv.org&rft.au=Li,%20Yiyuan&rft.date=2022-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2736486917%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27364869173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736486917&rft_id=info:pmid/&rfr_iscdi=true |