Loading…

Seamful XAI: Operationalizing Seamful Design in Explainable AI

Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-03
Main Authors: Upol Ehsan, Q Vera Liao, Passi, Samir, Riedl, Mark O, Daume, Hal
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Upol Ehsan
Q Vera Liao
Passi, Samir
Riedl, Mark O
Daume, Hal
description Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can we leverage them to help the user? While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster AI explainability by revealing and leveraging sociotechnical and infrastructural mismatches. We introduce the concept of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders anticipate and design with seams. We explore this process with 43 AI practitioners and real end-users, using a scenario-based co-design activity informed by real-world use cases. We found that the Seamful XAI design process helped users foresee AI harms, identify underlying reasons (seams), locate them in the AI's lifecycle, learn how to leverage seamful information to improve XAI and user agency. We share empirical insights, implications, and reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.
doi_str_mv 10.48550/arxiv.2211.06753
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736490472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736490472</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-fe24ea28819773452b9ef0d8dd6065f5a1a17387c947f5c8a26ac2c07258f6163</originalsourceid><addsrcrecordid>eNo1jk9LwzAcQIMgOOY-wG4Bz63JL3_rQShzzsJgB3fYbfzWJiMjtrVZZfjpHaind3jweITMOculVYo94nAJXzkA5znTRokbMgEheGYlwB2ZpXRijIE2oJSYkOd3hx9-jHRXVk9007sBz6FrMYbv0B7pv31xKRxbGlq6vPQRQ4uH6GhZ3ZNbjzG52R-nZPu63C7esvVmVS3KdYaFEpl3IB2CtbwwRkgFh8J51tim0Uwrr5AjN8KaupDGq9oiaKyhZtdH6zXXYkoefrP90H2OLp33p24crpdpD0ZoWTBpQPwA-BtIdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736490472</pqid></control><display><type>article</type><title>Seamful XAI: Operationalizing Seamful Design in Explainable AI</title><source>Publicly Available Content Database</source><creator>Upol Ehsan ; Q Vera Liao ; Passi, Samir ; Riedl, Mark O ; Daume, Hal</creator><creatorcontrib>Upol Ehsan ; Q Vera Liao ; Passi, Samir ; Riedl, Mark O ; Daume, Hal</creatorcontrib><description>Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can we leverage them to help the user? While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster AI explainability by revealing and leveraging sociotechnical and infrastructural mismatches. We introduce the concept of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders anticipate and design with seams. We explore this process with 43 AI practitioners and real end-users, using a scenario-based co-design activity informed by real-world use cases. We found that the Seamful XAI design process helped users foresee AI harms, identify underlying reasons (seams), locate them in the AI's lifecycle, learn how to leverage seamful information to improve XAI and user agency. We share empirical insights, implications, and reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2211.06753</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Co-design ; Seams ; User experience</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2736490472?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25740,27912,36999,44577</link.rule.ids></links><search><creatorcontrib>Upol Ehsan</creatorcontrib><creatorcontrib>Q Vera Liao</creatorcontrib><creatorcontrib>Passi, Samir</creatorcontrib><creatorcontrib>Riedl, Mark O</creatorcontrib><creatorcontrib>Daume, Hal</creatorcontrib><title>Seamful XAI: Operationalizing Seamful Design in Explainable AI</title><title>arXiv.org</title><description>Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can we leverage them to help the user? While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster AI explainability by revealing and leveraging sociotechnical and infrastructural mismatches. We introduce the concept of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders anticipate and design with seams. We explore this process with 43 AI practitioners and real end-users, using a scenario-based co-design activity informed by real-world use cases. We found that the Seamful XAI design process helped users foresee AI harms, identify underlying reasons (seams), locate them in the AI's lifecycle, learn how to leverage seamful information to improve XAI and user agency. We share empirical insights, implications, and reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.</description><subject>Co-design</subject><subject>Seams</subject><subject>User experience</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1jk9LwzAcQIMgOOY-wG4Bz63JL3_rQShzzsJgB3fYbfzWJiMjtrVZZfjpHaind3jweITMOculVYo94nAJXzkA5znTRokbMgEheGYlwB2ZpXRijIE2oJSYkOd3hx9-jHRXVk9007sBz6FrMYbv0B7pv31xKRxbGlq6vPQRQ4uH6GhZ3ZNbjzG52R-nZPu63C7esvVmVS3KdYaFEpl3IB2CtbwwRkgFh8J51tim0Uwrr5AjN8KaupDGq9oiaKyhZtdH6zXXYkoefrP90H2OLp33p24crpdpD0ZoWTBpQPwA-BtIdQ</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Upol Ehsan</creator><creator>Q Vera Liao</creator><creator>Passi, Samir</creator><creator>Riedl, Mark O</creator><creator>Daume, Hal</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240305</creationdate><title>Seamful XAI: Operationalizing Seamful Design in Explainable AI</title><author>Upol Ehsan ; Q Vera Liao ; Passi, Samir ; Riedl, Mark O ; Daume, Hal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-fe24ea28819773452b9ef0d8dd6065f5a1a17387c947f5c8a26ac2c07258f6163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Co-design</topic><topic>Seams</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Upol Ehsan</creatorcontrib><creatorcontrib>Q Vera Liao</creatorcontrib><creatorcontrib>Passi, Samir</creatorcontrib><creatorcontrib>Riedl, Mark O</creatorcontrib><creatorcontrib>Daume, Hal</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Upol Ehsan</au><au>Q Vera Liao</au><au>Passi, Samir</au><au>Riedl, Mark O</au><au>Daume, Hal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seamful XAI: Operationalizing Seamful Design in Explainable AI</atitle><jtitle>arXiv.org</jtitle><date>2024-03-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Mistakes in AI systems are inevitable, arising from both technical limitations and sociotechnical gaps. While black-boxing AI systems can make the user experience seamless, hiding the seams risks disempowering users to mitigate fallouts from AI mistakes. Instead of hiding these AI imperfections, can we leverage them to help the user? While Explainable AI (XAI) has predominantly tackled algorithmic opaqueness, we propose that seamful design can foster AI explainability by revealing and leveraging sociotechnical and infrastructural mismatches. We introduce the concept of Seamful XAI by (1) conceptually transferring "seams" to the AI context and (2) developing a design process that helps stakeholders anticipate and design with seams. We explore this process with 43 AI practitioners and real end-users, using a scenario-based co-design activity informed by real-world use cases. We found that the Seamful XAI design process helped users foresee AI harms, identify underlying reasons (seams), locate them in the AI's lifecycle, learn how to leverage seamful information to improve XAI and user agency. We share empirical insights, implications, and reflections on how this process can help practitioners anticipate and craft seams in AI, how seamfulness can improve explainability, empower end-users, and facilitate Responsible AI.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2211.06753</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2736490472
source Publicly Available Content Database
subjects Co-design
Seams
User experience
title Seamful XAI: Operationalizing Seamful Design in Explainable AI
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A16%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seamful%20XAI:%20Operationalizing%20Seamful%20Design%20in%20Explainable%20AI&rft.jtitle=arXiv.org&rft.au=Upol%20Ehsan&rft.date=2024-03-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2211.06753&rft_dat=%3Cproquest%3E2736490472%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-fe24ea28819773452b9ef0d8dd6065f5a1a17387c947f5c8a26ac2c07258f6163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736490472&rft_id=info:pmid/&rfr_iscdi=true