Loading…

Irreducible nonmetrizable path systems in graphs

A path system P ${\mathscr{P}}$ in a graph G =(V , E ) $G=(V,E)$ is a collection of paths with a unique u v $uv$ path for every two vertices u , v ∈ V $u,v\in V$. We say that P ${\mathscr{P}}$ is consistent if for any path P ∈ P $P\in {\mathscr{P}}$, every subpath of P $P$ is also in P ${\mathscr{P}...

Full description

Saved in:
Bibliographic Details
Published in:Journal of graph theory 2023-01, Vol.102 (1), p.5-14
Main Authors: Cizma, Daniel, Linial, Nati
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2574-4d2336169f984ccf933d7f5d727eea196914990122821b6dc2ffbe00037809033
container_end_page 14
container_issue 1
container_start_page 5
container_title Journal of graph theory
container_volume 102
creator Cizma, Daniel
Linial, Nati
description A path system P ${\mathscr{P}}$ in a graph G =(V , E ) $G=(V,E)$ is a collection of paths with a unique u v $uv$ path for every two vertices u , v ∈ V $u,v\in V$. We say that P ${\mathscr{P}}$ is consistent if for any path P ∈ P $P\in {\mathscr{P}}$, every subpath of P $P$ is also in P ${\mathscr{P}}$. It is metrizable if there exists a positive weight function w : E → R> 0 $w:E\to {{\mathbb{R}}}_{\gt 0}$ such that P ${\mathscr{P}}$ is comprised of w $w$‐shortest paths. We call P ${\mathscr{P}}$ irreducible if there does not exist a partition V = A ⊔ B $V=A\bigsqcup B$ such that P ${\mathscr{P}}$ restricts to a path system on both G[ A ] $G[A]$ and G[ B ] $G[B]$. In this paper, we construct an infinite family of nonmetrizable irreducible consistent path systems on certain Paley graphs.
doi_str_mv 10.1002/jgt.22854
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736636369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736636369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-4d2336169f984ccf933d7f5d727eea196914990122821b6dc2ffbe00037809033</originalsourceid><addsrcrecordid>eNp1kDtPwzAQgC0EEqEw8A8iMTGkPT9ixyOqoBRVYimz5SR2mygv7ESo_HpcwopuON3pu4c-hO4xLDEAWdWHcUlIlrILFGGQIgGMs0sUAeUskUDYNbrxvobQTiGLEGydM-VUVHlj4q7vWjO66lufq0GPx9if_GhaH1ddfHB6OPpbdGV1483dX16gj5fn_fo12b1vtuunXVKQVLCElYRSjrm0MmNFYSWlpbBpKYgwRmPJJWZSAg6_EpzzsiDW5gYAqMhAAqUL9DDvHVz_ORk_qrqfXBdOKiIo5zSEDNTjTBWu994ZqwZXtdqdFAZ1FqKCEPUrJLCrmf2qGnP6H1Rvm_088QO1Ml_j</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736636369</pqid></control><display><type>article</type><title>Irreducible nonmetrizable path systems in graphs</title><source>Wiley</source><creator>Cizma, Daniel ; Linial, Nati</creator><creatorcontrib>Cizma, Daniel ; Linial, Nati</creatorcontrib><description>A path system P ${\mathscr{P}}$ in a graph G =(V , E ) $G=(V,E)$ is a collection of paths with a unique u v $uv$ path for every two vertices u , v ∈ V $u,v\in V$. We say that P ${\mathscr{P}}$ is consistent if for any path P ∈ P $P\in {\mathscr{P}}$, every subpath of P $P$ is also in P ${\mathscr{P}}$. It is metrizable if there exists a positive weight function w : E → R&gt; 0 $w:E\to {{\mathbb{R}}}_{\gt 0}$ such that P ${\mathscr{P}}$ is comprised of w $w$‐shortest paths. We call P ${\mathscr{P}}$ irreducible if there does not exist a partition V = A ⊔ B $V=A\bigsqcup B$ such that P ${\mathscr{P}}$ restricts to a path system on both G[ A ] $G[A]$ and G[ B ] $G[B]$. In this paper, we construct an infinite family of nonmetrizable irreducible consistent path systems on certain Paley graphs.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22854</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Apexes ; Graphs ; irreducibility ; metrizability ; Paley graphs ; path systems ; Shortest-path problems ; Weighting functions</subject><ispartof>Journal of graph theory, 2023-01, Vol.102 (1), p.5-14</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-4d2336169f984ccf933d7f5d727eea196914990122821b6dc2ffbe00037809033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cizma, Daniel</creatorcontrib><creatorcontrib>Linial, Nati</creatorcontrib><title>Irreducible nonmetrizable path systems in graphs</title><title>Journal of graph theory</title><description>A path system P ${\mathscr{P}}$ in a graph G =(V , E ) $G=(V,E)$ is a collection of paths with a unique u v $uv$ path for every two vertices u , v ∈ V $u,v\in V$. We say that P ${\mathscr{P}}$ is consistent if for any path P ∈ P $P\in {\mathscr{P}}$, every subpath of P $P$ is also in P ${\mathscr{P}}$. It is metrizable if there exists a positive weight function w : E → R&gt; 0 $w:E\to {{\mathbb{R}}}_{\gt 0}$ such that P ${\mathscr{P}}$ is comprised of w $w$‐shortest paths. We call P ${\mathscr{P}}$ irreducible if there does not exist a partition V = A ⊔ B $V=A\bigsqcup B$ such that P ${\mathscr{P}}$ restricts to a path system on both G[ A ] $G[A]$ and G[ B ] $G[B]$. In this paper, we construct an infinite family of nonmetrizable irreducible consistent path systems on certain Paley graphs.</description><subject>Apexes</subject><subject>Graphs</subject><subject>irreducibility</subject><subject>metrizability</subject><subject>Paley graphs</subject><subject>path systems</subject><subject>Shortest-path problems</subject><subject>Weighting functions</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kDtPwzAQgC0EEqEw8A8iMTGkPT9ixyOqoBRVYimz5SR2mygv7ESo_HpcwopuON3pu4c-hO4xLDEAWdWHcUlIlrILFGGQIgGMs0sUAeUskUDYNbrxvobQTiGLEGydM-VUVHlj4q7vWjO66lufq0GPx9if_GhaH1ddfHB6OPpbdGV1483dX16gj5fn_fo12b1vtuunXVKQVLCElYRSjrm0MmNFYSWlpbBpKYgwRmPJJWZSAg6_EpzzsiDW5gYAqMhAAqUL9DDvHVz_ORk_qrqfXBdOKiIo5zSEDNTjTBWu994ZqwZXtdqdFAZ1FqKCEPUrJLCrmf2qGnP6H1Rvm_088QO1Ml_j</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Cizma, Daniel</creator><creator>Linial, Nati</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Irreducible nonmetrizable path systems in graphs</title><author>Cizma, Daniel ; Linial, Nati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-4d2336169f984ccf933d7f5d727eea196914990122821b6dc2ffbe00037809033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Graphs</topic><topic>irreducibility</topic><topic>metrizability</topic><topic>Paley graphs</topic><topic>path systems</topic><topic>Shortest-path problems</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cizma, Daniel</creatorcontrib><creatorcontrib>Linial, Nati</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Journals</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cizma, Daniel</au><au>Linial, Nati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Irreducible nonmetrizable path systems in graphs</atitle><jtitle>Journal of graph theory</jtitle><date>2023-01</date><risdate>2023</risdate><volume>102</volume><issue>1</issue><spage>5</spage><epage>14</epage><pages>5-14</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A path system P ${\mathscr{P}}$ in a graph G =(V , E ) $G=(V,E)$ is a collection of paths with a unique u v $uv$ path for every two vertices u , v ∈ V $u,v\in V$. We say that P ${\mathscr{P}}$ is consistent if for any path P ∈ P $P\in {\mathscr{P}}$, every subpath of P $P$ is also in P ${\mathscr{P}}$. It is metrizable if there exists a positive weight function w : E → R&gt; 0 $w:E\to {{\mathbb{R}}}_{\gt 0}$ such that P ${\mathscr{P}}$ is comprised of w $w$‐shortest paths. We call P ${\mathscr{P}}$ irreducible if there does not exist a partition V = A ⊔ B $V=A\bigsqcup B$ such that P ${\mathscr{P}}$ restricts to a path system on both G[ A ] $G[A]$ and G[ B ] $G[B]$. In this paper, we construct an infinite family of nonmetrizable irreducible consistent path systems on certain Paley graphs.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22854</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2023-01, Vol.102 (1), p.5-14
issn 0364-9024
1097-0118
language eng
recordid cdi_proquest_journals_2736636369
source Wiley
subjects Apexes
Graphs
irreducibility
metrizability
Paley graphs
path systems
Shortest-path problems
Weighting functions
title Irreducible nonmetrizable path systems in graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Irreducible%20nonmetrizable%20path%20systems%20in%20graphs&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Cizma,%20Daniel&rft.date=2023-01&rft.volume=102&rft.issue=1&rft.spage=5&rft.epage=14&rft.pages=5-14&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22854&rft_dat=%3Cproquest_cross%3E2736636369%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2574-4d2336169f984ccf933d7f5d727eea196914990122821b6dc2ffbe00037809033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736636369&rft_id=info:pmid/&rfr_iscdi=true