Loading…
Single-pass randomized QLP decomposition for low-rank approximation
As a special UTV decomposition, the QLP decomposition is an effective alternative of the singular value decomposition (SVD) for the low-rank approximation. In this paper, we propose a single-pass randomized QLP decomposition algorithm for computing a low-rank matrix approximation. Compared with the...
Saved in:
Published in: | Calcolo 2022-11, Vol.59 (4), Article 49 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Calcolo |
container_volume | 59 |
creator | Ren, Huan Xiao, Guiyun Bai, Zheng-Jian |
description | As a special UTV decomposition, the QLP decomposition is an effective alternative of the singular value decomposition (SVD) for the low-rank approximation. In this paper, we propose a single-pass randomized QLP decomposition algorithm for computing a low-rank matrix approximation. Compared with the randomized QLP decomposition, the complexity of the proposed algorithm does not increase significantly and the data matrix needs to be accessed only once. Therefore, our algorithm is suitable for a large matrix stored outside of memory or generated by streaming data. In the error analysis, we give the matrix approximation error analysis. We also provide singular value approximation error bounds, which can track the target largest singular values of the data matrix with high probability. Numerical experiments are also reported to verify our results. |
doi_str_mv | 10.1007/s10092-022-00491-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736742866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736742866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3</originalsourceid><addsrcrecordid>eNp9UEtLxDAQDqLgWv0Dngqeo5N3epTFFyyoqOeQtsnSdbepSRcfv96sFbx5mBmG-R7Dh9ApgXMCoC5S7hXFQHMBrwjme2hGCJVYcMb30QwANAZJ-SE6SmmVV8E1n6H5U9cv1w4PNqUy2r4Nm-7LteXj4qFsXRM2Q0jd2IW-9CGW6_COM-i1tMMQw0e3sbvTMTrwdp3cye8s0Mv11fP8Fi_ub-7mlwvcMFKNuPK1Er4FDZppUhNbM1771hLXCCmZUjI_DjXXQJxtrKACgApSO82o9MyyAp1Nutn7bevSaFZhG_tsaahiUnGqs06B6IRqYkgpOm-GmB-Nn4aA2YVlprBMDsv8hGV4JrGJlDK4X7r4J_0P6xtLVWvd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736742866</pqid></control><display><type>article</type><title>Single-pass randomized QLP decomposition for low-rank approximation</title><source>Springer Nature</source><creator>Ren, Huan ; Xiao, Guiyun ; Bai, Zheng-Jian</creator><creatorcontrib>Ren, Huan ; Xiao, Guiyun ; Bai, Zheng-Jian</creatorcontrib><description>As a special UTV decomposition, the QLP decomposition is an effective alternative of the singular value decomposition (SVD) for the low-rank approximation. In this paper, we propose a single-pass randomized QLP decomposition algorithm for computing a low-rank matrix approximation. Compared with the randomized QLP decomposition, the complexity of the proposed algorithm does not increase significantly and the data matrix needs to be accessed only once. Therefore, our algorithm is suitable for a large matrix stored outside of memory or generated by streaming data. In the error analysis, we give the matrix approximation error analysis. We also provide singular value approximation error bounds, which can track the target largest singular values of the data matrix with high probability. Numerical experiments are also reported to verify our results.</description><identifier>ISSN: 0008-0624</identifier><identifier>EISSN: 1126-5434</identifier><identifier>DOI: 10.1007/s10092-022-00491-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Approximation ; Error analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Singular value decomposition ; Theory of Computation ; Tracking</subject><ispartof>Calcolo, 2022-11, Vol.59 (4), Article 49</ispartof><rights>The Author(s) under exclusive licence to Istituto di Informatica e Telematica (IIT) 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3</citedby><cites>FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3</cites><orcidid>0000-0002-5134-3500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Huan</creatorcontrib><creatorcontrib>Xiao, Guiyun</creatorcontrib><creatorcontrib>Bai, Zheng-Jian</creatorcontrib><title>Single-pass randomized QLP decomposition for low-rank approximation</title><title>Calcolo</title><addtitle>Calcolo</addtitle><description>As a special UTV decomposition, the QLP decomposition is an effective alternative of the singular value decomposition (SVD) for the low-rank approximation. In this paper, we propose a single-pass randomized QLP decomposition algorithm for computing a low-rank matrix approximation. Compared with the randomized QLP decomposition, the complexity of the proposed algorithm does not increase significantly and the data matrix needs to be accessed only once. Therefore, our algorithm is suitable for a large matrix stored outside of memory or generated by streaming data. In the error analysis, we give the matrix approximation error analysis. We also provide singular value approximation error bounds, which can track the target largest singular values of the data matrix with high probability. Numerical experiments are also reported to verify our results.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Error analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Singular value decomposition</subject><subject>Theory of Computation</subject><subject>Tracking</subject><issn>0008-0624</issn><issn>1126-5434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLxDAQDqLgWv0Dngqeo5N3epTFFyyoqOeQtsnSdbepSRcfv96sFbx5mBmG-R7Dh9ApgXMCoC5S7hXFQHMBrwjme2hGCJVYcMb30QwANAZJ-SE6SmmVV8E1n6H5U9cv1w4PNqUy2r4Nm-7LteXj4qFsXRM2Q0jd2IW-9CGW6_COM-i1tMMQw0e3sbvTMTrwdp3cye8s0Mv11fP8Fi_ub-7mlwvcMFKNuPK1Er4FDZppUhNbM1771hLXCCmZUjI_DjXXQJxtrKACgApSO82o9MyyAp1Nutn7bevSaFZhG_tsaahiUnGqs06B6IRqYkgpOm-GmB-Nn4aA2YVlprBMDsv8hGV4JrGJlDK4X7r4J_0P6xtLVWvd</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ren, Huan</creator><creator>Xiao, Guiyun</creator><creator>Bai, Zheng-Jian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5134-3500</orcidid></search><sort><creationdate>20221101</creationdate><title>Single-pass randomized QLP decomposition for low-rank approximation</title><author>Ren, Huan ; Xiao, Guiyun ; Bai, Zheng-Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Error analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Singular value decomposition</topic><topic>Theory of Computation</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Huan</creatorcontrib><creatorcontrib>Xiao, Guiyun</creatorcontrib><creatorcontrib>Bai, Zheng-Jian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calcolo</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Huan</au><au>Xiao, Guiyun</au><au>Bai, Zheng-Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-pass randomized QLP decomposition for low-rank approximation</atitle><jtitle>Calcolo</jtitle><stitle>Calcolo</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>59</volume><issue>4</issue><artnum>49</artnum><issn>0008-0624</issn><eissn>1126-5434</eissn><abstract>As a special UTV decomposition, the QLP decomposition is an effective alternative of the singular value decomposition (SVD) for the low-rank approximation. In this paper, we propose a single-pass randomized QLP decomposition algorithm for computing a low-rank matrix approximation. Compared with the randomized QLP decomposition, the complexity of the proposed algorithm does not increase significantly and the data matrix needs to be accessed only once. Therefore, our algorithm is suitable for a large matrix stored outside of memory or generated by streaming data. In the error analysis, we give the matrix approximation error analysis. We also provide singular value approximation error bounds, which can track the target largest singular values of the data matrix with high probability. Numerical experiments are also reported to verify our results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10092-022-00491-4</doi><orcidid>https://orcid.org/0000-0002-5134-3500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-0624 |
ispartof | Calcolo, 2022-11, Vol.59 (4), Article 49 |
issn | 0008-0624 1126-5434 |
language | eng |
recordid | cdi_proquest_journals_2736742866 |
source | Springer Nature |
subjects | Algorithms Approximation Error analysis Mathematical analysis Mathematics Mathematics and Statistics Numerical Analysis Singular value decomposition Theory of Computation Tracking |
title | Single-pass randomized QLP decomposition for low-rank approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-pass%20randomized%20QLP%20decomposition%20for%20low-rank%20approximation&rft.jtitle=Calcolo&rft.au=Ren,%20Huan&rft.date=2022-11-01&rft.volume=59&rft.issue=4&rft.artnum=49&rft.issn=0008-0624&rft.eissn=1126-5434&rft_id=info:doi/10.1007/s10092-022-00491-4&rft_dat=%3Cproquest_cross%3E2736742866%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-9fb75fd0808381b1ab34bfda1ec56637764910b4801eaca52500251be8326f3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736742866&rft_id=info:pmid/&rfr_iscdi=true |