Loading…

Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy

The opacity of deep learning models constrains their debugging and improvement. Augmenting deep models with saliency-based strategies, such as attention, has been claimed to help get a better understanding of the decision-making process of black-box models. However, some recent works challenged sali...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Rizzo, Matteo, Conati, Cristina, Jang, Daesik, Hu, Hui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rizzo, Matteo
Conati, Cristina
Jang, Daesik
Hu, Hui
description The opacity of deep learning models constrains their debugging and improvement. Augmenting deep models with saliency-based strategies, such as attention, has been claimed to help get a better understanding of the decision-making process of black-box models. However, some recent works challenged saliency's faithfulness in the field of Natural Language Processing (NLP), questioning attention weights' adherence to the true decision-making process of the model. We add to this discussion by evaluating the faithfulness of in-model saliency applied to a video processing task for the first time, namely, temporal colour constancy. We perform the evaluation by adapting to our target task two tests for faithfulness from recent NLP literature, whose methodology we refine as part of our contributions. We show that attention fails to achieve faithfulness, while confidence, a particular type of in-model visual saliency, succeeds.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736932285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736932285</sourcerecordid><originalsourceid>FETCH-proquest_journals_27369322853</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMgWNR_WPBcqIn1cdYWD3qy97LarVZiUrOp6N8b0Q_wNIcZpiciqdQ0Xs6kHIgx8zVJEjlfyDRVkbhnD9Qd-sacwV8Icmz8pe60IWawNRxQN2ROr_iITBVkz1ajCbk1DLV1sCFqYUfozOewtxXpryjo1lqHGtZW284FGPYYTiPRr1EzjX8cikmeFett3Dp774h9eQ29CaqUCzVfKSmXqfqvegNI4ktq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736932285</pqid></control><display><type>article</type><title>Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy</title><source>Publicly Available Content (ProQuest)</source><creator>Rizzo, Matteo ; Conati, Cristina ; Jang, Daesik ; Hu, Hui</creator><creatorcontrib>Rizzo, Matteo ; Conati, Cristina ; Jang, Daesik ; Hu, Hui</creatorcontrib><description>The opacity of deep learning models constrains their debugging and improvement. Augmenting deep models with saliency-based strategies, such as attention, has been claimed to help get a better understanding of the decision-making process of black-box models. However, some recent works challenged saliency's faithfulness in the field of Natural Language Processing (NLP), questioning attention weights' adherence to the true decision-making process of the model. We add to this discussion by evaluating the faithfulness of in-model saliency applied to a video processing task for the first time, namely, temporal colour constancy. We perform the evaluation by adapting to our target task two tests for faithfulness from recent NLP literature, whose methodology we refine as part of our contributions. We show that attention fails to achieve faithfulness, while confidence, a particular type of in-model visual saliency, succeeds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Color ; Decision making ; Deep learning ; Image processing ; Mathematical models ; Natural language processing ; Salience ; Video</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2736932285?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Rizzo, Matteo</creatorcontrib><creatorcontrib>Conati, Cristina</creatorcontrib><creatorcontrib>Jang, Daesik</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><title>Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy</title><title>arXiv.org</title><description>The opacity of deep learning models constrains their debugging and improvement. Augmenting deep models with saliency-based strategies, such as attention, has been claimed to help get a better understanding of the decision-making process of black-box models. However, some recent works challenged saliency's faithfulness in the field of Natural Language Processing (NLP), questioning attention weights' adherence to the true decision-making process of the model. We add to this discussion by evaluating the faithfulness of in-model saliency applied to a video processing task for the first time, namely, temporal colour constancy. We perform the evaluation by adapting to our target task two tests for faithfulness from recent NLP literature, whose methodology we refine as part of our contributions. We show that attention fails to achieve faithfulness, while confidence, a particular type of in-model visual saliency, succeeds.</description><subject>Color</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Image processing</subject><subject>Mathematical models</subject><subject>Natural language processing</subject><subject>Salience</subject><subject>Video</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAQAIMgWNR_WPBcqIn1cdYWD3qy97LarVZiUrOp6N8b0Q_wNIcZpiciqdQ0Xs6kHIgx8zVJEjlfyDRVkbhnD9Qd-sacwV8Icmz8pe60IWawNRxQN2ROr_iITBVkz1ajCbk1DLV1sCFqYUfozOewtxXpryjo1lqHGtZW284FGPYYTiPRr1EzjX8cikmeFett3Dp774h9eQ29CaqUCzVfKSmXqfqvegNI4ktq</recordid><startdate>20221115</startdate><enddate>20221115</enddate><creator>Rizzo, Matteo</creator><creator>Conati, Cristina</creator><creator>Jang, Daesik</creator><creator>Hu, Hui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221115</creationdate><title>Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy</title><author>Rizzo, Matteo ; Conati, Cristina ; Jang, Daesik ; Hu, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27369322853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Color</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Image processing</topic><topic>Mathematical models</topic><topic>Natural language processing</topic><topic>Salience</topic><topic>Video</topic><toplevel>online_resources</toplevel><creatorcontrib>Rizzo, Matteo</creatorcontrib><creatorcontrib>Conati, Cristina</creatorcontrib><creatorcontrib>Jang, Daesik</creatorcontrib><creatorcontrib>Hu, Hui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rizzo, Matteo</au><au>Conati, Cristina</au><au>Jang, Daesik</au><au>Hu, Hui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy</atitle><jtitle>arXiv.org</jtitle><date>2022-11-15</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The opacity of deep learning models constrains their debugging and improvement. Augmenting deep models with saliency-based strategies, such as attention, has been claimed to help get a better understanding of the decision-making process of black-box models. However, some recent works challenged saliency's faithfulness in the field of Natural Language Processing (NLP), questioning attention weights' adherence to the true decision-making process of the model. We add to this discussion by evaluating the faithfulness of in-model saliency applied to a video processing task for the first time, namely, temporal colour constancy. We perform the evaluation by adapting to our target task two tests for faithfulness from recent NLP literature, whose methodology we refine as part of our contributions. We show that attention fails to achieve faithfulness, while confidence, a particular type of in-model visual saliency, succeeds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2736932285
source Publicly Available Content (ProQuest)
subjects Color
Decision making
Deep learning
Image processing
Mathematical models
Natural language processing
Salience
Video
title Evaluating the Faithfulness of Saliency-based Explanations for Deep Learning Models for Temporal Colour Constancy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Evaluating%20the%20Faithfulness%20of%20Saliency-based%20Explanations%20for%20Deep%20Learning%20Models%20for%20Temporal%20Colour%20Constancy&rft.jtitle=arXiv.org&rft.au=Rizzo,%20Matteo&rft.date=2022-11-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2736932285%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27369322853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2736932285&rft_id=info:pmid/&rfr_iscdi=true