Loading…

H2-Golden-Retriever: Methodology and Tool for an Evidence-Based Hydrogen Research Grantsmanship

Hydrogen is poised to play a major role in decarbonizing the economy. The need to discover, develop, and understand low-cost, high-performance, durable materials that can help maximize the cost of electrolysis as well as the need for an intelligent tool to make evidence-based Hydrogen research fundi...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Seurin, Paul, Olabanjo, Olusola, Wiggins, Joseph, Pratt, Lorien, Rana, Loveneesh, Yasaei, Rozhin, Renard, Gregory
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogen is poised to play a major role in decarbonizing the economy. The need to discover, develop, and understand low-cost, high-performance, durable materials that can help maximize the cost of electrolysis as well as the need for an intelligent tool to make evidence-based Hydrogen research funding decisions relatively easier warranted this study.In this work, we developed H2 Golden Retriever (H2GR) system for Hydrogen knowledge discovery and representation using Natural Language Processing (NLP), Knowledge Graph and Decision Intelligence. This system represents a novel methodology encapsulating state-of-the-art technique for evidence-based research grantmanship. Relevant Hydrogen papers were scraped and indexed from the web and preprocessing was done using noise and stop-words removal, language and spell check, stemming and lemmatization. The NLP tasks included Named Entity Recognition using Stanford and Spacy NER, topic modeling using Latent Dirichlet Allocation and TF-IDF. The Knowledge Graph module was used for the generation of meaningful entities and their relationships, trends and patterns in relevant H2 papers, thanks to an ontology of the hydrogen production domain. The Decision Intelligence component provides stakeholders with a simulation environment for cost and quantity dependencies. PageRank algorithm was used to rank papers of interest. Random searches were made on the proposed H2GR and the results included a list of papers ranked by relevancy score, entities, graphs of relationships between the entities, ontology of H2 production and Causal Decision Diagrams showing component interactivity. Qualitative assessment was done by the experts and H2GR is deemed to function to a satisfactory level.
ISSN:2331-8422