Loading…

Thermal conductivity of multilayer polymer-nanocomposite thin films

The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic ac...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2022-11, Vol.132 (19)
Main Authors: Aryal, Anil, Bradicich, Adelaide, Iverson, Ethan T., Long, Carolyn T., Chiang, Hsu-Cheng, Grunlan, Jaime C., Shamberger, Patrick J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3
cites cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3
container_end_page
container_issue 19
container_start_page
container_title Journal of applied physics
container_volume 132
creator Aryal, Anil
Bradicich, Adelaide
Iverson, Ethan T.
Long, Carolyn T.
Chiang, Hsu-Cheng
Grunlan, Jaime C.
Shamberger, Patrick J.
description The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity ( k ⊥ ) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The k ⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The k ⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.
doi_str_mv 10.1063/5.0102203
format article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2737585410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737585410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</originalsourceid><addsrcrecordid>eNqd0DtrwzAUBWBRWmj6GPoPTDu14PTqZdljCX1BoEs6C0eWiIJtuZIc8L-vggPdO93l457DQegOwxJDQZ_5EjAQAvQMLTCUVS44h3O0ACA4LytRXaKrEPYAGJe0WqDVZqd9V7eZcn0zqmgPNk6ZM1k3ttG29aR9Nrh26rTP-7p3ynWDCzbqLO5snxnbduEGXZi6Dfr2dK_R99vrZvWRr7_eP1cv61xRzmLOoFFUl7hI0Q1pqooRQbAutBJ1qQtKtCIVE6pgJrU1AnMNuMECtnprBFP0Gt3Pf12IVgaVWqhd6t1rFSVhhFABCT3MaPDuZ9Qhyr0bfZ96SSKo4CVn-KgeZ6W8C8FrIwdvu9pPEoM8Dim5PA2Z7NNsj4l1tK7_Hz44_wfl0Bj6C_tFgD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737585410</pqid></control><display><type>article</type><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J.</creator><creatorcontrib>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J. ; Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><description>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity ( k ⊥ ) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The k ⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The k ⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0102203</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boron nitride ; Ethylene oxide ; Fillers ; Film growth ; Heat conductivity ; Heat transfer ; Insulators ; Montmorillonite ; Multilayers ; Nanocomposites ; Physics ; Polyacrylic acid ; Polyethylene oxide ; Polyethyleneimine ; Polymer films ; Polymers ; Thermal conductivity ; Thermal management ; Thin films</subject><ispartof>Journal of applied physics, 2022-11, Vol.132 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</citedby><cites>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</cites><orcidid>0000-0002-8737-6064 ; 0000-0003-0095-2565 ; 0000-0001-5241-9741 ; 0000000300952565 ; 0000000287376064 ; 0000000152419741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2422370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aryal, Anil</creatorcontrib><creatorcontrib>Bradicich, Adelaide</creatorcontrib><creatorcontrib>Iverson, Ethan T.</creatorcontrib><creatorcontrib>Long, Carolyn T.</creatorcontrib><creatorcontrib>Chiang, Hsu-Cheng</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><title>Journal of applied physics</title><description>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity ( k ⊥ ) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The k ⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The k ⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</description><subject>Applied physics</subject><subject>Boron nitride</subject><subject>Ethylene oxide</subject><subject>Fillers</subject><subject>Film growth</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Insulators</subject><subject>Montmorillonite</subject><subject>Multilayers</subject><subject>Nanocomposites</subject><subject>Physics</subject><subject>Polyacrylic acid</subject><subject>Polyethylene oxide</subject><subject>Polyethyleneimine</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0DtrwzAUBWBRWmj6GPoPTDu14PTqZdljCX1BoEs6C0eWiIJtuZIc8L-vggPdO93l457DQegOwxJDQZ_5EjAQAvQMLTCUVS44h3O0ACA4LytRXaKrEPYAGJe0WqDVZqd9V7eZcn0zqmgPNk6ZM1k3ttG29aR9Nrh26rTP-7p3ynWDCzbqLO5snxnbduEGXZi6Dfr2dK_R99vrZvWRr7_eP1cv61xRzmLOoFFUl7hI0Q1pqooRQbAutBJ1qQtKtCIVE6pgJrU1AnMNuMECtnprBFP0Gt3Pf12IVgaVWqhd6t1rFSVhhFABCT3MaPDuZ9Qhyr0bfZ96SSKo4CVn-KgeZ6W8C8FrIwdvu9pPEoM8Dim5PA2Z7NNsj4l1tK7_Hz44_wfl0Bj6C_tFgD4</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Aryal, Anil</creator><creator>Bradicich, Adelaide</creator><creator>Iverson, Ethan T.</creator><creator>Long, Carolyn T.</creator><creator>Chiang, Hsu-Cheng</creator><creator>Grunlan, Jaime C.</creator><creator>Shamberger, Patrick J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8737-6064</orcidid><orcidid>https://orcid.org/0000-0003-0095-2565</orcidid><orcidid>https://orcid.org/0000-0001-5241-9741</orcidid><orcidid>https://orcid.org/0000000300952565</orcidid><orcidid>https://orcid.org/0000000287376064</orcidid><orcidid>https://orcid.org/0000000152419741</orcidid></search><sort><creationdate>20221121</creationdate><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><author>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Boron nitride</topic><topic>Ethylene oxide</topic><topic>Fillers</topic><topic>Film growth</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Insulators</topic><topic>Montmorillonite</topic><topic>Multilayers</topic><topic>Nanocomposites</topic><topic>Physics</topic><topic>Polyacrylic acid</topic><topic>Polyethylene oxide</topic><topic>Polyethyleneimine</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryal, Anil</creatorcontrib><creatorcontrib>Bradicich, Adelaide</creatorcontrib><creatorcontrib>Iverson, Ethan T.</creatorcontrib><creatorcontrib>Long, Carolyn T.</creatorcontrib><creatorcontrib>Chiang, Hsu-Cheng</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryal, Anil</au><au>Bradicich, Adelaide</au><au>Iverson, Ethan T.</au><au>Long, Carolyn T.</au><au>Chiang, Hsu-Cheng</au><au>Grunlan, Jaime C.</au><au>Shamberger, Patrick J.</au><aucorp>Texas A &amp; M Univ., College Station, TX (United States). Texas A &amp; M Engineering Experiment Station</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of multilayer polymer-nanocomposite thin films</atitle><jtitle>Journal of applied physics</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>132</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity ( k ⊥ ) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The k ⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The k ⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0102203</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8737-6064</orcidid><orcidid>https://orcid.org/0000-0003-0095-2565</orcidid><orcidid>https://orcid.org/0000-0001-5241-9741</orcidid><orcidid>https://orcid.org/0000000300952565</orcidid><orcidid>https://orcid.org/0000000287376064</orcidid><orcidid>https://orcid.org/0000000152419741</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-11, Vol.132 (19)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2737585410
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Applied physics
Boron nitride
Ethylene oxide
Fillers
Film growth
Heat conductivity
Heat transfer
Insulators
Montmorillonite
Multilayers
Nanocomposites
Physics
Polyacrylic acid
Polyethylene oxide
Polyethyleneimine
Polymer films
Polymers
Thermal conductivity
Thermal management
Thin films
title Thermal conductivity of multilayer polymer-nanocomposite thin films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20multilayer%20polymer-nanocomposite%20thin%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aryal,%20Anil&rft.aucorp=Texas%20A%20&%20M%20Univ.,%20College%20Station,%20TX%20(United%20States).%20Texas%20A%20&%20M%20Engineering%20Experiment%20Station&rft.date=2022-11-21&rft.volume=132&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0102203&rft_dat=%3Cproquest_scita%3E2737585410%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737585410&rft_id=info:pmid/&rfr_iscdi=true