Loading…
Thermal conductivity of multilayer polymer-nanocomposite thin films
The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic ac...
Saved in:
Published in: | Journal of applied physics 2022-11, Vol.132 (19) |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3 |
container_end_page | |
container_issue | 19 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 132 |
creator | Aryal, Anil Bradicich, Adelaide Iverson, Ethan T. Long, Carolyn T. Chiang, Hsu-Cheng Grunlan, Jaime C. Shamberger, Patrick J. |
description | The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity
(
k
⊥
) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The
k
⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The
k
⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers. |
doi_str_mv | 10.1063/5.0102203 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2737585410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737585410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</originalsourceid><addsrcrecordid>eNqd0DtrwzAUBWBRWmj6GPoPTDu14PTqZdljCX1BoEs6C0eWiIJtuZIc8L-vggPdO93l457DQegOwxJDQZ_5EjAQAvQMLTCUVS44h3O0ACA4LytRXaKrEPYAGJe0WqDVZqd9V7eZcn0zqmgPNk6ZM1k3ttG29aR9Nrh26rTP-7p3ynWDCzbqLO5snxnbduEGXZi6Dfr2dK_R99vrZvWRr7_eP1cv61xRzmLOoFFUl7hI0Q1pqooRQbAutBJ1qQtKtCIVE6pgJrU1AnMNuMECtnprBFP0Gt3Pf12IVgaVWqhd6t1rFSVhhFABCT3MaPDuZ9Qhyr0bfZ96SSKo4CVn-KgeZ6W8C8FrIwdvu9pPEoM8Dim5PA2Z7NNsj4l1tK7_Hz44_wfl0Bj6C_tFgD4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737585410</pqid></control><display><type>article</type><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J.</creator><creatorcontrib>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J. ; Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station</creatorcontrib><description>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity
(
k
⊥
) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The
k
⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The
k
⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0102203</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boron nitride ; Ethylene oxide ; Fillers ; Film growth ; Heat conductivity ; Heat transfer ; Insulators ; Montmorillonite ; Multilayers ; Nanocomposites ; Physics ; Polyacrylic acid ; Polyethylene oxide ; Polyethyleneimine ; Polymer films ; Polymers ; Thermal conductivity ; Thermal management ; Thin films</subject><ispartof>Journal of applied physics, 2022-11, Vol.132 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</citedby><cites>FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</cites><orcidid>0000-0002-8737-6064 ; 0000-0003-0095-2565 ; 0000-0001-5241-9741 ; 0000000300952565 ; 0000000287376064 ; 0000000152419741</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2422370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Aryal, Anil</creatorcontrib><creatorcontrib>Bradicich, Adelaide</creatorcontrib><creatorcontrib>Iverson, Ethan T.</creatorcontrib><creatorcontrib>Long, Carolyn T.</creatorcontrib><creatorcontrib>Chiang, Hsu-Cheng</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station</creatorcontrib><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><title>Journal of applied physics</title><description>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity
(
k
⊥
) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The
k
⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The
k
⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</description><subject>Applied physics</subject><subject>Boron nitride</subject><subject>Ethylene oxide</subject><subject>Fillers</subject><subject>Film growth</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Insulators</subject><subject>Montmorillonite</subject><subject>Multilayers</subject><subject>Nanocomposites</subject><subject>Physics</subject><subject>Polyacrylic acid</subject><subject>Polyethylene oxide</subject><subject>Polyethyleneimine</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thin films</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0DtrwzAUBWBRWmj6GPoPTDu14PTqZdljCX1BoEs6C0eWiIJtuZIc8L-vggPdO93l457DQegOwxJDQZ_5EjAQAvQMLTCUVS44h3O0ACA4LytRXaKrEPYAGJe0WqDVZqd9V7eZcn0zqmgPNk6ZM1k3ttG29aR9Nrh26rTP-7p3ynWDCzbqLO5snxnbduEGXZi6Dfr2dK_R99vrZvWRr7_eP1cv61xRzmLOoFFUl7hI0Q1pqooRQbAutBJ1qQtKtCIVE6pgJrU1AnMNuMECtnprBFP0Gt3Pf12IVgaVWqhd6t1rFSVhhFABCT3MaPDuZ9Qhyr0bfZ96SSKo4CVn-KgeZ6W8C8FrIwdvu9pPEoM8Dim5PA2Z7NNsj4l1tK7_Hz44_wfl0Bj6C_tFgD4</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Aryal, Anil</creator><creator>Bradicich, Adelaide</creator><creator>Iverson, Ethan T.</creator><creator>Long, Carolyn T.</creator><creator>Chiang, Hsu-Cheng</creator><creator>Grunlan, Jaime C.</creator><creator>Shamberger, Patrick J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8737-6064</orcidid><orcidid>https://orcid.org/0000-0003-0095-2565</orcidid><orcidid>https://orcid.org/0000-0001-5241-9741</orcidid><orcidid>https://orcid.org/0000000300952565</orcidid><orcidid>https://orcid.org/0000000287376064</orcidid><orcidid>https://orcid.org/0000000152419741</orcidid></search><sort><creationdate>20221121</creationdate><title>Thermal conductivity of multilayer polymer-nanocomposite thin films</title><author>Aryal, Anil ; Bradicich, Adelaide ; Iverson, Ethan T. ; Long, Carolyn T. ; Chiang, Hsu-Cheng ; Grunlan, Jaime C. ; Shamberger, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Boron nitride</topic><topic>Ethylene oxide</topic><topic>Fillers</topic><topic>Film growth</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Insulators</topic><topic>Montmorillonite</topic><topic>Multilayers</topic><topic>Nanocomposites</topic><topic>Physics</topic><topic>Polyacrylic acid</topic><topic>Polyethylene oxide</topic><topic>Polyethyleneimine</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aryal, Anil</creatorcontrib><creatorcontrib>Bradicich, Adelaide</creatorcontrib><creatorcontrib>Iverson, Ethan T.</creatorcontrib><creatorcontrib>Long, Carolyn T.</creatorcontrib><creatorcontrib>Chiang, Hsu-Cheng</creatorcontrib><creatorcontrib>Grunlan, Jaime C.</creatorcontrib><creatorcontrib>Shamberger, Patrick J.</creatorcontrib><creatorcontrib>Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aryal, Anil</au><au>Bradicich, Adelaide</au><au>Iverson, Ethan T.</au><au>Long, Carolyn T.</au><au>Chiang, Hsu-Cheng</au><au>Grunlan, Jaime C.</au><au>Shamberger, Patrick J.</au><aucorp>Texas A & M Univ., College Station, TX (United States). Texas A & M Engineering Experiment Station</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of multilayer polymer-nanocomposite thin films</atitle><jtitle>Journal of applied physics</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>132</volume><issue>19</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The development of electrical insulators that are thermally conducting is critical for thermal management applications in many advanced electronics and electrical devices. Here, we synthesized polymer nanocomposite (PNC) films composed of polymers [polyethylenimine, poly(vinylamine), poly(acrylic acid), and poly(ethylene oxide)] and dielectric fillers (montmorillonite clay and hexagonal boron nitride) by layer-by-layer technique. The cross-plane thermal conductivity
(
k
⊥
) of the film was measured by the 3ω method. The effect of various factors such as film growth, filler type, filler volume fraction, polymer chemical structures, and temperature on the thermal conductivity is reported. The
k
⊥ of PNCs with thickness from 37 nm to 1.34 μm was found to be in the range of 0.11 to 0.21 ± 0.02 W m−1 K−1. The
k
⊥ values were found to be lower than the constituent polymer matrix. The experimental result is compared with existing theoretical models of nanocomposite systems to get insight into heat transfer behavior in such layered films composed of dielectrics and polymers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0102203</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8737-6064</orcidid><orcidid>https://orcid.org/0000-0003-0095-2565</orcidid><orcidid>https://orcid.org/0000-0001-5241-9741</orcidid><orcidid>https://orcid.org/0000000300952565</orcidid><orcidid>https://orcid.org/0000000287376064</orcidid><orcidid>https://orcid.org/0000000152419741</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-11, Vol.132 (19) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2737585410 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Applied physics Boron nitride Ethylene oxide Fillers Film growth Heat conductivity Heat transfer Insulators Montmorillonite Multilayers Nanocomposites Physics Polyacrylic acid Polyethylene oxide Polyethyleneimine Polymer films Polymers Thermal conductivity Thermal management Thin films |
title | Thermal conductivity of multilayer polymer-nanocomposite thin films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A19%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20multilayer%20polymer-nanocomposite%20thin%20films&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Aryal,%20Anil&rft.aucorp=Texas%20A%20&%20M%20Univ.,%20College%20Station,%20TX%20(United%20States).%20Texas%20A%20&%20M%20Engineering%20Experiment%20Station&rft.date=2022-11-21&rft.volume=132&rft.issue=19&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0102203&rft_dat=%3Cproquest_scita%3E2737585410%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-40dc3e816118d2d9942721e6ec7a8e632ec2947c64f002f715e01d170bebf74c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737585410&rft_id=info:pmid/&rfr_iscdi=true |