Loading…

A Bird's-eye View of Reranking: from List Level to Page Level

Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking me...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Yunjia Xi, Lin, Jianghao, Liu, Weiwen, Dai, Xinyi, Zhang, Weinan, Zhang, Rui, Tang, Ruiming, Yu, Yong
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yunjia Xi
Lin, Jianghao
Liu, Weiwen
Dai, Xinyi
Zhang, Weinan
Zhang, Rui
Tang, Ruiming
Yu, Yong
description Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2737600416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737600416</sourcerecordid><originalsourceid>FETCH-proquest_journals_27376004163</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdVRwyixKUS_WTa1MVQjLTC1XyE9TCEotSszLzsxLt1JIK8rPVfDJLC5R8EktS81RKMlXCEhMT4XweBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjc2NzMwMDE0MyYOFUAh0A2AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737600416</pqid></control><display><type>article</type><title>A Bird's-eye View of Reranking: from List Level to Page Level</title><source>Publicly Available Content Database</source><creator>Yunjia Xi ; Lin, Jianghao ; Liu, Weiwen ; Dai, Xinyi ; Zhang, Weinan ; Zhang, Rui ; Tang, Ruiming ; Yu, Yong</creator><creatorcontrib>Yunjia Xi ; Lin, Jianghao ; Liu, Weiwen ; Dai, Xinyi ; Zhang, Weinan ; Zhang, Rui ; Tang, Ruiming ; Yu, Yong</creatorcontrib><description>Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Modules ; Multimedia ; Recommender systems ; User behavior</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2737600416?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Yunjia Xi</creatorcontrib><creatorcontrib>Lin, Jianghao</creatorcontrib><creatorcontrib>Liu, Weiwen</creatorcontrib><creatorcontrib>Dai, Xinyi</creatorcontrib><creatorcontrib>Zhang, Weinan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><title>A Bird's-eye View of Reranking: from List Level to Page Level</title><title>arXiv.org</title><description>Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.</description><subject>Datasets</subject><subject>Modules</subject><subject>Multimedia</subject><subject>Recommender systems</subject><subject>User behavior</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwdVRwyixKUS_WTa1MVQjLTC1XyE9TCEotSszLzsxLt1JIK8rPVfDJLC5R8EktS81RKMlXCEhMT4XweBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjc2NzMwMDE0MyYOFUAh0A2AQ</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Yunjia Xi</creator><creator>Lin, Jianghao</creator><creator>Liu, Weiwen</creator><creator>Dai, Xinyi</creator><creator>Zhang, Weinan</creator><creator>Zhang, Rui</creator><creator>Tang, Ruiming</creator><creator>Yu, Yong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221117</creationdate><title>A Bird's-eye View of Reranking: from List Level to Page Level</title><author>Yunjia Xi ; Lin, Jianghao ; Liu, Weiwen ; Dai, Xinyi ; Zhang, Weinan ; Zhang, Rui ; Tang, Ruiming ; Yu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27376004163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Datasets</topic><topic>Modules</topic><topic>Multimedia</topic><topic>Recommender systems</topic><topic>User behavior</topic><toplevel>online_resources</toplevel><creatorcontrib>Yunjia Xi</creatorcontrib><creatorcontrib>Lin, Jianghao</creatorcontrib><creatorcontrib>Liu, Weiwen</creatorcontrib><creatorcontrib>Dai, Xinyi</creatorcontrib><creatorcontrib>Zhang, Weinan</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Tang, Ruiming</creatorcontrib><creatorcontrib>Yu, Yong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yunjia Xi</au><au>Lin, Jianghao</au><au>Liu, Weiwen</au><au>Dai, Xinyi</au><au>Zhang, Weinan</au><au>Zhang, Rui</au><au>Tang, Ruiming</au><au>Yu, Yong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Bird's-eye View of Reranking: from List Level to Page Level</atitle><jtitle>arXiv.org</jtitle><date>2022-11-17</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2737600416
source Publicly Available Content Database
subjects Datasets
Modules
Multimedia
Recommender systems
User behavior
title A Bird's-eye View of Reranking: from List Level to Page Level
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Bird's-eye%20View%20of%20Reranking:%20from%20List%20Level%20to%20Page%20Level&rft.jtitle=arXiv.org&rft.au=Yunjia%20Xi&rft.date=2022-11-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2737600416%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27376004163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737600416&rft_id=info:pmid/&rfr_iscdi=true