Loading…
Design, Optimization, and Blackbox Optimization of Laser Systems
Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor and additive manufacturing, communication networks, biology and medicine, defense and national security, and a host of other sectors over the past decades....
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hirschman, Jack Lemons, Randy Wang, Minyang Kroetz, Peter Carbajo, Sergio |
description | Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor and additive manufacturing, communication networks, biology and medicine, defense and national security, and a host of other sectors over the past decades. Accurately and efficiently modeling CPA and NLO-based laser systems is challenging because of the multitude of coupled linear and nonlinear processes and high variability in simulation frameworks. The lack of fully-integrated models severely hampers further advances in tailoring existing or materializing new CPA+NLO systems. Such tools are the key to enabling emerging optimization and inverse design approaches reliant on data-driven machine learning methods. Here, we present a modular start-to-end software model encompassing an array of amplifier designs and nonlinear optics techniques. The simulator renders time- and frequency-resolved electromagnetic fields alongside essential physical characteristics of energy, fluence, and spectral distribution. To demonstrate its robustness and real-world applicability -- specifically, reverse engineering, system optimization, and inverse design -- we present a case study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2737601165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737601165</sourcerecordid><originalsourceid>FETCH-proquest_journals_27376011653</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEktzkzP01HwLyjJzM2sSizJzAfyEvNSFJxyEpOzk_IrUKQU8tMUfBKLU4sUgiuLS1Jzi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I3NjczMDQ0MzUmDhVABS9OM4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737601165</pqid></control><display><type>article</type><title>Design, Optimization, and Blackbox Optimization of Laser Systems</title><source>Publicly Available Content Database</source><creator>Hirschman, Jack ; Lemons, Randy ; Wang, Minyang ; Kroetz, Peter ; Carbajo, Sergio</creator><creatorcontrib>Hirschman, Jack ; Lemons, Randy ; Wang, Minyang ; Kroetz, Peter ; Carbajo, Sergio</creatorcontrib><description>Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor and additive manufacturing, communication networks, biology and medicine, defense and national security, and a host of other sectors over the past decades. Accurately and efficiently modeling CPA and NLO-based laser systems is challenging because of the multitude of coupled linear and nonlinear processes and high variability in simulation frameworks. The lack of fully-integrated models severely hampers further advances in tailoring existing or materializing new CPA+NLO systems. Such tools are the key to enabling emerging optimization and inverse design approaches reliant on data-driven machine learning methods. Here, we present a modular start-to-end software model encompassing an array of amplifier designs and nonlinear optics techniques. The simulator renders time- and frequency-resolved electromagnetic fields alongside essential physical characteristics of energy, fluence, and spectral distribution. To demonstrate its robustness and real-world applicability -- specifically, reverse engineering, system optimization, and inverse design -- we present a case study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Amplifier design ; Communication networks ; Design optimization ; Electromagnetic fields ; Energy distribution ; Fluence ; High power lasers ; Integrated software ; Inverse design ; Lasers ; Machine learning ; Modelling ; Nonlinear optics ; Physical properties ; Reverse engineering ; Software</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2737601165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Hirschman, Jack</creatorcontrib><creatorcontrib>Lemons, Randy</creatorcontrib><creatorcontrib>Wang, Minyang</creatorcontrib><creatorcontrib>Kroetz, Peter</creatorcontrib><creatorcontrib>Carbajo, Sergio</creatorcontrib><title>Design, Optimization, and Blackbox Optimization of Laser Systems</title><title>arXiv.org</title><description>Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor and additive manufacturing, communication networks, biology and medicine, defense and national security, and a host of other sectors over the past decades. Accurately and efficiently modeling CPA and NLO-based laser systems is challenging because of the multitude of coupled linear and nonlinear processes and high variability in simulation frameworks. The lack of fully-integrated models severely hampers further advances in tailoring existing or materializing new CPA+NLO systems. Such tools are the key to enabling emerging optimization and inverse design approaches reliant on data-driven machine learning methods. Here, we present a modular start-to-end software model encompassing an array of amplifier designs and nonlinear optics techniques. The simulator renders time- and frequency-resolved electromagnetic fields alongside essential physical characteristics of energy, fluence, and spectral distribution. To demonstrate its robustness and real-world applicability -- specifically, reverse engineering, system optimization, and inverse design -- we present a case study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.</description><subject>Amplifier design</subject><subject>Communication networks</subject><subject>Design optimization</subject><subject>Electromagnetic fields</subject><subject>Energy distribution</subject><subject>Fluence</subject><subject>High power lasers</subject><subject>Integrated software</subject><subject>Inverse design</subject><subject>Lasers</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Nonlinear optics</subject><subject>Physical properties</subject><subject>Reverse engineering</subject><subject>Software</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEktzkzP01HwLyjJzM2sSizJzAfyEvNSFJxyEpOzk_IrUKQU8tMUfBKLU4sUgiuLS1Jzi3kYWNMSc4pTeaE0N4Oym2uIs4duQVF-YWlqcUl8Vn5pUR5QKt7I3NjczMDQ0MzUmDhVABS9OM4</recordid><startdate>20230420</startdate><enddate>20230420</enddate><creator>Hirschman, Jack</creator><creator>Lemons, Randy</creator><creator>Wang, Minyang</creator><creator>Kroetz, Peter</creator><creator>Carbajo, Sergio</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230420</creationdate><title>Design, Optimization, and Blackbox Optimization of Laser Systems</title><author>Hirschman, Jack ; Lemons, Randy ; Wang, Minyang ; Kroetz, Peter ; Carbajo, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27376011653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amplifier design</topic><topic>Communication networks</topic><topic>Design optimization</topic><topic>Electromagnetic fields</topic><topic>Energy distribution</topic><topic>Fluence</topic><topic>High power lasers</topic><topic>Integrated software</topic><topic>Inverse design</topic><topic>Lasers</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Nonlinear optics</topic><topic>Physical properties</topic><topic>Reverse engineering</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Hirschman, Jack</creatorcontrib><creatorcontrib>Lemons, Randy</creatorcontrib><creatorcontrib>Wang, Minyang</creatorcontrib><creatorcontrib>Kroetz, Peter</creatorcontrib><creatorcontrib>Carbajo, Sergio</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirschman, Jack</au><au>Lemons, Randy</au><au>Wang, Minyang</au><au>Kroetz, Peter</au><au>Carbajo, Sergio</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Design, Optimization, and Blackbox Optimization of Laser Systems</atitle><jtitle>arXiv.org</jtitle><date>2023-04-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Chirped pulse amplification (CPA) and subsequent nonlinear optical (NLO) systems constitute the backbone of myriad advancements in semiconductor and additive manufacturing, communication networks, biology and medicine, defense and national security, and a host of other sectors over the past decades. Accurately and efficiently modeling CPA and NLO-based laser systems is challenging because of the multitude of coupled linear and nonlinear processes and high variability in simulation frameworks. The lack of fully-integrated models severely hampers further advances in tailoring existing or materializing new CPA+NLO systems. Such tools are the key to enabling emerging optimization and inverse design approaches reliant on data-driven machine learning methods. Here, we present a modular start-to-end software model encompassing an array of amplifier designs and nonlinear optics techniques. The simulator renders time- and frequency-resolved electromagnetic fields alongside essential physical characteristics of energy, fluence, and spectral distribution. To demonstrate its robustness and real-world applicability -- specifically, reverse engineering, system optimization, and inverse design -- we present a case study on the LCLS-II photo-injector laser, representative of a high-power and spectro-temporally non-trivial CPA+NLO system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2737601165 |
source | Publicly Available Content Database |
subjects | Amplifier design Communication networks Design optimization Electromagnetic fields Energy distribution Fluence High power lasers Integrated software Inverse design Lasers Machine learning Modelling Nonlinear optics Physical properties Reverse engineering Software |
title | Design, Optimization, and Blackbox Optimization of Laser Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Design,%20Optimization,%20and%20Blackbox%20Optimization%20of%20Laser%20Systems&rft.jtitle=arXiv.org&rft.au=Hirschman,%20Jack&rft.date=2023-04-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2737601165%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27376011653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2737601165&rft_id=info:pmid/&rfr_iscdi=true |