Loading…

A study on microstructure and recrystallization kinetics on low deformed pure ETP copper

The kinetics of microstructural changes plays a vital role in designing the material properties. There are various microstructural transformation phenomena such as recovery, recrystallization, and strain-induced boundary migration, which affect the properties of materials. This study aims to investi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Institution of Mechanical Engineers. Part L, Journal of materials, design and applications Journal of materials, design and applications, 2022-12, Vol.236 (12), p.2493-2505
Main Authors: Harshavardhana, N, Sundar Singh Sivam, SP, Kumar, Gulshan, Saxena, Ashish Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The kinetics of microstructural changes plays a vital role in designing the material properties. There are various microstructural transformation phenomena such as recovery, recrystallization, and strain-induced boundary migration, which affect the properties of materials. This study aims to investigate the kinetics of low-strain deformed electrolytic tough pitch (ETP) copper (less than 23% reduction in thickness), where an optimum value of hardness and conductivity is obtained after heat treatment when compared with a high strain deformed sample. The activation energy values for the low deformed sample calculated from changes in hardness, conductivity, and microstructure are in the range of 39–99 kJ/mol, 30–90 kJ/mol, and 40–51 kJ/mol, respectively, which is low compared to high deformed values. Careful microstructural investigation of the low-strain deformed copper shows evidence of strain-induced boundary migration, whereas high strain deformed copper shows evidence of recrystallization. The strain-induced boundary migration plays an important role in “cleaning up” some of the deformed grains with a composite microstructure consisting of deformed grains that preserve high hardness, while some grains have low defect density which helps to obtain high conductivity after heat treatment.
ISSN:1464-4207
2041-3076
DOI:10.1177/14644207221096543