Loading…
Spherical cones: classification and a volume minimization principle
Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric s...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Tran-Trung Nghiem |
description | Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2738300289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738300289</sourcerecordid><originalsourceid>FETCH-proquest_journals_27383002893</originalsourceid><addsrcrecordid>eNqNjcsKwjAUBYMgWLT_EHBdiIm10W1R3Ou-hDTFW_Iyt3Hh11vQD3A1cObALEjBhdhVcs_5ipSII2OMHxpe16Ig7S0-TAKtLNXBGzxRbRUiDPM0QfBU-Z4q-go2O0MdeHDw_pqYwGuI1mzIclAWTfnjmmwv53t7rWIKz2xw6saQk59VxxshxZyXR_Hf6wM4-zq_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738300289</pqid></control><display><type>article</type><title>Spherical cones: classification and a volume minimization principle</title><source>Publicly Available Content Database</source><creator>Tran-Trung Nghiem</creator><creatorcontrib>Tran-Trung Nghiem</creatorcontrib><description>Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cones ; Optimization ; Principles</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2738300289?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Tran-Trung Nghiem</creatorcontrib><title>Spherical cones: classification and a volume minimization principle</title><title>arXiv.org</title><description>Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.</description><subject>Cones</subject><subject>Optimization</subject><subject>Principles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcsKwjAUBYMgWLT_EHBdiIm10W1R3Ou-hDTFW_Iyt3Hh11vQD3A1cObALEjBhdhVcs_5ipSII2OMHxpe16Ig7S0-TAKtLNXBGzxRbRUiDPM0QfBU-Z4q-go2O0MdeHDw_pqYwGuI1mzIclAWTfnjmmwv53t7rWIKz2xw6saQk59VxxshxZyXR_Hf6wM4-zq_</recordid><startdate>20230423</startdate><enddate>20230423</enddate><creator>Tran-Trung Nghiem</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230423</creationdate><title>Spherical cones: classification and a volume minimization principle</title><author>Tran-Trung Nghiem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27383002893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cones</topic><topic>Optimization</topic><topic>Principles</topic><toplevel>online_resources</toplevel><creatorcontrib>Tran-Trung Nghiem</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran-Trung Nghiem</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Spherical cones: classification and a volume minimization principle</atitle><jtitle>arXiv.org</jtitle><date>2023-04-23</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2738300289 |
source | Publicly Available Content Database |
subjects | Cones Optimization Principles |
title | Spherical cones: classification and a volume minimization principle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A59%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Spherical%20cones:%20classification%20and%20a%20volume%20minimization%20principle&rft.jtitle=arXiv.org&rft.au=Tran-Trung%20Nghiem&rft.date=2023-04-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2738300289%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27383002893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738300289&rft_id=info:pmid/&rfr_iscdi=true |