Loading…

Physics-informed neural networks for operator equations with stochastic data

We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2024-05
Main Authors: Paul Escapil-Inchauspé, Ruz, Gonzalo A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Paul Escapil-Inchauspé
Ruz, Gonzalo A
description We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2738300430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738300430</sourcerecordid><originalsourceid>FETCH-proquest_journals_27383004303</originalsourceid><addsrcrecordid>eNqNirEOgjAURRsTE4nyD02cSWofCLvRODg4uJMGSihgC32vIf69HfwAp3Nz7tmwRAKcsiqXcsdSxEEIIc-lLApI2OPZf9A0mBnbOf_WLbc6eDVF0Or8iDxq7mbtFcWhl6DIOIt8NdRzJNf0Csk0vFWkDmzbqQl1-uOeHW_X1-Wezd4tQSPVgwvexquWJVQgRA4C_qu-6BE-jA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738300430</pqid></control><display><type>article</type><title>Physics-informed neural networks for operator equations with stochastic data</title><source>Publicly Available Content (ProQuest)</source><creator>Paul Escapil-Inchauspé ; Ruz, Gonzalo A</creator><creatorcontrib>Paul Escapil-Inchauspé ; Ruz, Gonzalo A</creatorcontrib><description>We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Neural networks ; Tensors</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2738300430?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25728,36986,44563</link.rule.ids></links><search><creatorcontrib>Paul Escapil-Inchauspé</creatorcontrib><creatorcontrib>Ruz, Gonzalo A</creatorcontrib><title>Physics-informed neural networks for operator equations with stochastic data</title><title>arXiv.org</title><description>We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.</description><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEOgjAURRsTE4nyD02cSWofCLvRODg4uJMGSihgC32vIf69HfwAp3Nz7tmwRAKcsiqXcsdSxEEIIc-lLApI2OPZf9A0mBnbOf_WLbc6eDVF0Or8iDxq7mbtFcWhl6DIOIt8NdRzJNf0Csk0vFWkDmzbqQl1-uOeHW_X1-Wezd4tQSPVgwvexquWJVQgRA4C_qu-6BE-jA</recordid><startdate>20240503</startdate><enddate>20240503</enddate><creator>Paul Escapil-Inchauspé</creator><creator>Ruz, Gonzalo A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240503</creationdate><title>Physics-informed neural networks for operator equations with stochastic data</title><author>Paul Escapil-Inchauspé ; Ruz, Gonzalo A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27383004303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Paul Escapil-Inchauspé</creatorcontrib><creatorcontrib>Ruz, Gonzalo A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul Escapil-Inchauspé</au><au>Ruz, Gonzalo A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Physics-informed neural networks for operator equations with stochastic data</atitle><jtitle>arXiv.org</jtitle><date>2024-05-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We consider the computation of statistical moments to operator equations with stochastic data. We remark that application of PINNs -- referred to as TPINNs -- allows to solve the induced tensor operator equations under minimal changes of existing PINNs code, and enabling handling of non-linear and time-dependent operators. We propose two types of architectures, referred to as vanilla and multi-output TPINNs, and investigate their benefits and limitations. Exhaustive numerical experiments are performed; demonstrating applicability and performance; raising a variety of new promising research avenues.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2738300430
source Publicly Available Content (ProQuest)
subjects Mathematical analysis
Neural networks
Tensors
title Physics-informed neural networks for operator equations with stochastic data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-04T23%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Physics-informed%20neural%20networks%20for%20operator%20equations%20with%20stochastic%20data&rft.jtitle=arXiv.org&rft.au=Paul%20Escapil-Inchausp%C3%A9&rft.date=2024-05-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2738300430%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27383004303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738300430&rft_id=info:pmid/&rfr_iscdi=true