Loading…

Learning biological neuronal networks with artificial neural networks: neural oscillations

First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-11
Main Authors: Zhang, Ruilin, Wang, Zhongyi, Wu, Tianyi, Cai, Yuhang, Tao, Louis, Zhuo-Cheng, Xiao, Yao, Li
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Ruilin
Wang, Zhongyi
Wu, Tianyi
Cai, Yuhang
Tao, Louis
Zhuo-Cheng, Xiao
Yao, Li
description First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of first-principles-based artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by neural circuits in the brain. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.
doi_str_mv 10.48550/arxiv.2211.11169
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2738707697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738707697</sourcerecordid><originalsourceid>FETCH-LOGICAL-a959-61f281ea6b9da865a7cdb3496e8da7ee3ad0a0386825b821e7e35de916b5b9c93</originalsourceid><addsrcrecordid>eNpNjk1LxDAYhIMguKz7A7wVPLfmfdN8eZPFLyh42ZOX5U2brllLo0nr-vMVXcHTDPMMwzB2AbyqjZT8itJn-KgQASoAUPaELVAIKE2NeMZWOe8556g0SikW7LnxlMYw7goX4hB3oaWhGP2c4vhjpkNMr7k4hOmloDSFPrTh2PjHr_-CmNswDDSFOOZzdtrTkP3qqEu2ubvdrB_K5un-cX3TlGSlLRX0aMCTcrYjoyTptnOitsqbjrT3gjpOXBhlUDqD4LUXsvMWlJPOtlYs2eXv7FuK77PP03Yf5_T9Pm9RC6O5VlaLL_QRVis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738707697</pqid></control><display><type>article</type><title>Learning biological neuronal networks with artificial neural networks: neural oscillations</title><source>Publicly Available Content Database</source><creator>Zhang, Ruilin ; Wang, Zhongyi ; Wu, Tianyi ; Cai, Yuhang ; Tao, Louis ; Zhuo-Cheng, Xiao ; Yao, Li</creator><creatorcontrib>Zhang, Ruilin ; Wang, Zhongyi ; Wu, Tianyi ; Cai, Yuhang ; Tao, Louis ; Zhuo-Cheng, Xiao ; Yao, Li</creatorcontrib><description>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of first-principles-based artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by neural circuits in the brain. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2211.11169</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; First principles ; Mathematical models ; Modelling ; Neural networks ; Nonlinear dynamics ; Oscillations ; Parameters ; Training</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2738707697?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Ruilin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Wu, Tianyi</creatorcontrib><creatorcontrib>Cai, Yuhang</creatorcontrib><creatorcontrib>Tao, Louis</creatorcontrib><creatorcontrib>Zhuo-Cheng, Xiao</creatorcontrib><creatorcontrib>Yao, Li</creatorcontrib><title>Learning biological neuronal networks with artificial neural networks: neural oscillations</title><title>arXiv.org</title><description>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of first-principles-based artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by neural circuits in the brain. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</description><subject>Artificial neural networks</subject><subject>First principles</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Oscillations</subject><subject>Parameters</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNjk1LxDAYhIMguKz7A7wVPLfmfdN8eZPFLyh42ZOX5U2brllLo0nr-vMVXcHTDPMMwzB2AbyqjZT8itJn-KgQASoAUPaELVAIKE2NeMZWOe8556g0SikW7LnxlMYw7goX4hB3oaWhGP2c4vhjpkNMr7k4hOmloDSFPrTh2PjHr_-CmNswDDSFOOZzdtrTkP3qqEu2ubvdrB_K5un-cX3TlGSlLRX0aMCTcrYjoyTptnOitsqbjrT3gjpOXBhlUDqD4LUXsvMWlJPOtlYs2eXv7FuK77PP03Yf5_T9Pm9RC6O5VlaLL_QRVis</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Zhang, Ruilin</creator><creator>Wang, Zhongyi</creator><creator>Wu, Tianyi</creator><creator>Cai, Yuhang</creator><creator>Tao, Louis</creator><creator>Zhuo-Cheng, Xiao</creator><creator>Yao, Li</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221121</creationdate><title>Learning biological neuronal networks with artificial neural networks: neural oscillations</title><author>Zhang, Ruilin ; Wang, Zhongyi ; Wu, Tianyi ; Cai, Yuhang ; Tao, Louis ; Zhuo-Cheng, Xiao ; Yao, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a959-61f281ea6b9da865a7cdb3496e8da7ee3ad0a0386825b821e7e35de916b5b9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>First principles</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Oscillations</topic><topic>Parameters</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Ruilin</creatorcontrib><creatorcontrib>Wang, Zhongyi</creatorcontrib><creatorcontrib>Wu, Tianyi</creatorcontrib><creatorcontrib>Cai, Yuhang</creatorcontrib><creatorcontrib>Tao, Louis</creatorcontrib><creatorcontrib>Zhuo-Cheng, Xiao</creatorcontrib><creatorcontrib>Yao, Li</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Ruilin</au><au>Wang, Zhongyi</au><au>Wu, Tianyi</au><au>Cai, Yuhang</au><au>Tao, Louis</au><au>Zhuo-Cheng, Xiao</au><au>Yao, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning biological neuronal networks with artificial neural networks: neural oscillations</atitle><jtitle>arXiv.org</jtitle><date>2022-11-21</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>First-principles-based modelings have been extremely successful in providing crucial insights and predictions for complex biological functions and phenomena. However, they can be hard to build and expensive to simulate for complex living systems. On the other hand, modern data-driven methods thrive at modeling many types of high-dimensional and noisy data. Still, the training and interpretation of these data-driven models remain challenging. Here, we combine the two types of methods to model stochastic neuronal network oscillations. Specifically, we develop a class of first-principles-based artificial neural networks to provide faithful surrogates to the high-dimensional, nonlinear oscillatory dynamics produced by neural circuits in the brain. Furthermore, when the training data set is enlarged within a range of parameter choices, the artificial neural networks become generalizable to these parameters, covering cases in distinctly different dynamical regimes. In all, our work opens a new avenue for modeling complex neuronal network dynamics with artificial neural networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2211.11169</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2738707697
source Publicly Available Content Database
subjects Artificial neural networks
First principles
Mathematical models
Modelling
Neural networks
Nonlinear dynamics
Oscillations
Parameters
Training
title Learning biological neuronal networks with artificial neural networks: neural oscillations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20biological%20neuronal%20networks%20with%20artificial%20neural%20networks:%20neural%20oscillations&rft.jtitle=arXiv.org&rft.au=Zhang,%20Ruilin&rft.date=2022-11-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2211.11169&rft_dat=%3Cproquest%3E2738707697%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a959-61f281ea6b9da865a7cdb3496e8da7ee3ad0a0386825b821e7e35de916b5b9c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2738707697&rft_id=info:pmid/&rfr_iscdi=true