Loading…

Memory AMP

Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory 2022-12, Vol.68 (12), p.8015-8039
Main Authors: Liu, Lei, Huang, Shunqi, Kurkoski, Brian M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03
cites cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03
container_end_page 8039
container_issue 12
container_start_page 8015
container_title IEEE transactions on information theory
container_volume 68
creator Liu, Lei
Huang, Shunqi
Kurkoski, Brian M.
description Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.
doi_str_mv 10.1109/TIT.2022.3186166
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2739336796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9805776</ieee_id><sourcerecordid>2739336796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRMK3uBTeC69T3kZk3syxFa6FFF3E9pMkEWqypM-2i_96UFFePC-fex1HqAWGCCO6lXJQTAqIJozVozJXKUGvJndHFtcoA0OauKOytGqW07WOhkTI1WoVdF09P09Xnnbppq-8U7i93rL7eXsvZe778mC9m02VeE-EhrwTZAGHDLbQmNI2QGJDQBHFsCwRgQRFeEzXMtdEVrjU50dY5By3wWD0Pu_vY_R5DOvhtd4w__UtPwo7ZiDM9BQNVxy6lGFq_j5tdFU8ewZ-NfW_sz8b-YtxXHofKJoTwjzsLWsTwH2CXTNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739336796</pqid></control><display><type>article</type><title>Memory AMP</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</creator><creatorcontrib>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</creatorcontrib><description>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3186166</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate message passing (AMP) ; Asymptotic properties ; Bayes optimality ; Complexity ; Complexity theory ; compressed sensing ; Convergence ; Damping ; Estimation error ; Evolution ; Invariants ; large system limit ; Linear systems ; low complexity ; Matched filters ; Mathematical analysis ; Matrices (mathematics) ; memory AMP ; Message passing ; orthogonal/vector AMP ; Orthogonality ; Parameter estimation ; right-unitarily invariant ; Sparse matrices ; state evolution</subject><ispartof>IEEE transactions on information theory, 2022-12, Vol.68 (12), p.8015-8039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</citedby><cites>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</cites><orcidid>0000-0002-0807-2135 ; 0000-0003-4328-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9805776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Huang, Shunqi</creatorcontrib><creatorcontrib>Kurkoski, Brian M.</creatorcontrib><title>Memory AMP</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</description><subject>Approximate message passing (AMP)</subject><subject>Asymptotic properties</subject><subject>Bayes optimality</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>compressed sensing</subject><subject>Convergence</subject><subject>Damping</subject><subject>Estimation error</subject><subject>Evolution</subject><subject>Invariants</subject><subject>large system limit</subject><subject>Linear systems</subject><subject>low complexity</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>memory AMP</subject><subject>Message passing</subject><subject>orthogonal/vector AMP</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>right-unitarily invariant</subject><subject>Sparse matrices</subject><subject>state evolution</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRMK3uBTeC69T3kZk3syxFa6FFF3E9pMkEWqypM-2i_96UFFePC-fex1HqAWGCCO6lXJQTAqIJozVozJXKUGvJndHFtcoA0OauKOytGqW07WOhkTI1WoVdF09P09Xnnbppq-8U7i93rL7eXsvZe778mC9m02VeE-EhrwTZAGHDLbQmNI2QGJDQBHFsCwRgQRFeEzXMtdEVrjU50dY5By3wWD0Pu_vY_R5DOvhtd4w__UtPwo7ZiDM9BQNVxy6lGFq_j5tdFU8ewZ-NfW_sz8b-YtxXHofKJoTwjzsLWsTwH2CXTNY</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Liu, Lei</creator><creator>Huang, Shunqi</creator><creator>Kurkoski, Brian M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4328-8684</orcidid></search><sort><creationdate>20221201</creationdate><title>Memory AMP</title><author>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximate message passing (AMP)</topic><topic>Asymptotic properties</topic><topic>Bayes optimality</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>compressed sensing</topic><topic>Convergence</topic><topic>Damping</topic><topic>Estimation error</topic><topic>Evolution</topic><topic>Invariants</topic><topic>large system limit</topic><topic>Linear systems</topic><topic>low complexity</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>memory AMP</topic><topic>Message passing</topic><topic>orthogonal/vector AMP</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>right-unitarily invariant</topic><topic>Sparse matrices</topic><topic>state evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Huang, Shunqi</creatorcontrib><creatorcontrib>Kurkoski, Brian M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lei</au><au>Huang, Shunqi</au><au>Kurkoski, Brian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory AMP</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>68</volume><issue>12</issue><spage>8015</spage><epage>8039</epage><pages>8015-8039</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3186166</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4328-8684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2022-12, Vol.68 (12), p.8015-8039
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2739336796
source IEEE Electronic Library (IEL) Journals
subjects Approximate message passing (AMP)
Asymptotic properties
Bayes optimality
Complexity
Complexity theory
compressed sensing
Convergence
Damping
Estimation error
Evolution
Invariants
large system limit
Linear systems
low complexity
Matched filters
Mathematical analysis
Matrices (mathematics)
memory AMP
Message passing
orthogonal/vector AMP
Orthogonality
Parameter estimation
right-unitarily invariant
Sparse matrices
state evolution
title Memory AMP
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20AMP&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Liu,%20Lei&rft.date=2022-12-01&rft.volume=68&rft.issue=12&rft.spage=8015&rft.epage=8039&rft.pages=8015-8039&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3186166&rft_dat=%3Cproquest_ieee_%3E2739336796%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739336796&rft_id=info:pmid/&rft_ieee_id=9805776&rfr_iscdi=true