Loading…
Memory AMP
Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or e...
Saved in:
Published in: | IEEE transactions on information theory 2022-12, Vol.68 (12), p.8015-8039 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03 |
container_end_page | 8039 |
container_issue | 12 |
container_start_page | 8015 |
container_title | IEEE transactions on information theory |
container_volume | 68 |
creator | Liu, Lei Huang, Shunqi Kurkoski, Brian M. |
description | Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy. |
doi_str_mv | 10.1109/TIT.2022.3186166 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2739336796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9805776</ieee_id><sourcerecordid>2739336796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRMK3uBTeC69T3kZk3syxFa6FFF3E9pMkEWqypM-2i_96UFFePC-fex1HqAWGCCO6lXJQTAqIJozVozJXKUGvJndHFtcoA0OauKOytGqW07WOhkTI1WoVdF09P09Xnnbppq-8U7i93rL7eXsvZe778mC9m02VeE-EhrwTZAGHDLbQmNI2QGJDQBHFsCwRgQRFeEzXMtdEVrjU50dY5By3wWD0Pu_vY_R5DOvhtd4w__UtPwo7ZiDM9BQNVxy6lGFq_j5tdFU8ewZ-NfW_sz8b-YtxXHofKJoTwjzsLWsTwH2CXTNY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739336796</pqid></control><display><type>article</type><title>Memory AMP</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</creator><creatorcontrib>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</creatorcontrib><description>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2022.3186166</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximate message passing (AMP) ; Asymptotic properties ; Bayes optimality ; Complexity ; Complexity theory ; compressed sensing ; Convergence ; Damping ; Estimation error ; Evolution ; Invariants ; large system limit ; Linear systems ; low complexity ; Matched filters ; Mathematical analysis ; Matrices (mathematics) ; memory AMP ; Message passing ; orthogonal/vector AMP ; Orthogonality ; Parameter estimation ; right-unitarily invariant ; Sparse matrices ; state evolution</subject><ispartof>IEEE transactions on information theory, 2022-12, Vol.68 (12), p.8015-8039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</citedby><cites>FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</cites><orcidid>0000-0002-0807-2135 ; 0000-0003-4328-8684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9805776$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Huang, Shunqi</creatorcontrib><creatorcontrib>Kurkoski, Brian M.</creatorcontrib><title>Memory AMP</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</description><subject>Approximate message passing (AMP)</subject><subject>Asymptotic properties</subject><subject>Bayes optimality</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>compressed sensing</subject><subject>Convergence</subject><subject>Damping</subject><subject>Estimation error</subject><subject>Evolution</subject><subject>Invariants</subject><subject>large system limit</subject><subject>Linear systems</subject><subject>low complexity</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>memory AMP</subject><subject>Message passing</subject><subject>orthogonal/vector AMP</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>right-unitarily invariant</subject><subject>Sparse matrices</subject><subject>state evolution</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRMK3uBTeC69T3kZk3syxFa6FFF3E9pMkEWqypM-2i_96UFFePC-fex1HqAWGCCO6lXJQTAqIJozVozJXKUGvJndHFtcoA0OauKOytGqW07WOhkTI1WoVdF09P09Xnnbppq-8U7i93rL7eXsvZe778mC9m02VeE-EhrwTZAGHDLbQmNI2QGJDQBHFsCwRgQRFeEzXMtdEVrjU50dY5By3wWD0Pu_vY_R5DOvhtd4w__UtPwo7ZiDM9BQNVxy6lGFq_j5tdFU8ewZ-NfW_sz8b-YtxXHofKJoTwjzsLWsTwH2CXTNY</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Liu, Lei</creator><creator>Huang, Shunqi</creator><creator>Kurkoski, Brian M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4328-8684</orcidid></search><sort><creationdate>20221201</creationdate><title>Memory AMP</title><author>Liu, Lei ; Huang, Shunqi ; Kurkoski, Brian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximate message passing (AMP)</topic><topic>Asymptotic properties</topic><topic>Bayes optimality</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>compressed sensing</topic><topic>Convergence</topic><topic>Damping</topic><topic>Estimation error</topic><topic>Evolution</topic><topic>Invariants</topic><topic>large system limit</topic><topic>Linear systems</topic><topic>low complexity</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>memory AMP</topic><topic>Message passing</topic><topic>orthogonal/vector AMP</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>right-unitarily invariant</topic><topic>Sparse matrices</topic><topic>state evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Huang, Shunqi</creatorcontrib><creatorcontrib>Kurkoski, Brian M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Lei</au><au>Huang, Shunqi</au><au>Kurkoski, Brian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory AMP</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>68</volume><issue>12</issue><spage>8015</spage><epage>8039</epage><pages>8015-8039</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Approximate message passing (AMP) is a low-cost iterative parameter-estimation technique for certain high-dimensional linear systems with non-Gaussian distributions. AMP only applies to independent identically distributed (IID) transform matrices, but may become unreliable (e.g., perform poorly or even diverge) for other matrix ensembles, especially for ill-conditioned ones. To solve this issue, orthogonal/vector AMP (OAMP/VAMP) was proposed for general right-unitarily-invariant matrices. However, the Bayes-optimal OAMP/VAMP (BO-OAMP/VAMP) requires a high-complexity linear minimum mean square error (MMSE) estimator. This prevents OAMP/VAMP from being used in large-scale systems. To address the drawbacks of AMP and BO-OAMP/VAMP, this paper offers a memory AMP (MAMP) framework based on the orthogonality principle, which ensures that estimation errors in MAMP are asymptotically IID Gaussian. To realize the required orthogonality for MAMP, we provide an orthogonalization procedure for the local memory estimators. In addition, we propose a Bayes-optimal MAMP (BO-MAMP), in which a long-memory matched filter is used for interference suppression. The complexity of BO-MAMP is comparable to AMP. To asymptotically characterize the performance of BO-MAMP, a state evolution is derived. The relaxation parameters and damping vector in BO-MAMP are optimized based on state evolution. Most crucially, the state evolution of the optimized BO-MAMP converges to the same fixed point as that of the high-complexity BO-OAMP/VAMP for all right-unitarily-invariant matrices, and achieves the Bayes optimal MSE predicted by the replica method if its state evolution has a unique fixed point. Finally, simulations are provided to verify the theoretical results' validity and accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2022.3186166</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-0807-2135</orcidid><orcidid>https://orcid.org/0000-0003-4328-8684</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2022-12, Vol.68 (12), p.8015-8039 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_2739336796 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Approximate message passing (AMP) Asymptotic properties Bayes optimality Complexity Complexity theory compressed sensing Convergence Damping Estimation error Evolution Invariants large system limit Linear systems low complexity Matched filters Mathematical analysis Matrices (mathematics) memory AMP Message passing orthogonal/vector AMP Orthogonality Parameter estimation right-unitarily invariant Sparse matrices state evolution |
title | Memory AMP |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory%20AMP&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Liu,%20Lei&rft.date=2022-12-01&rft.volume=68&rft.issue=12&rft.spage=8015&rft.epage=8039&rft.pages=8015-8039&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2022.3186166&rft_dat=%3Cproquest_ieee_%3E2739336796%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-a7136021d3f0f6edd727607ede79384100371773b22d33c65a1b5297589990f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739336796&rft_id=info:pmid/&rft_ieee_id=9805776&rfr_iscdi=true |