Loading…

Ambient Air Monitoring System with Adaptive Performance Stability

Air pollution is a significant concern in this era. Pollutants released in large quantities can cause environmental damage and human health problems. The existing monitoring systems are highly precise and sensitive, but they require high laboratory analysis and operational costs. To overcome these p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2022, Vol.10, p.1-1
Main Authors: Purbakawaca, R., Yuwono, A.S., Subrata, I.D.M., Supandi, Alatas, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3
cites cdi_FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 10
creator Purbakawaca, R.
Yuwono, A.S.
Subrata, I.D.M.
Supandi
Alatas, H.
description Air pollution is a significant concern in this era. Pollutants released in large quantities can cause environmental damage and human health problems. The existing monitoring systems are highly precise and sensitive, but they require high laboratory analysis and operational costs. To overcome these problems, an air quality monitoring system is proposed as an alternative solution that can complement the current system. This study aimed to design an inexpensive air quality monitoring system using metal oxide sensors to measure the concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) using laser diffraction, microcontroller, and General Packet Radio Service (GPRS) module. The Air Quality IPB Monitoring System (AQIMoS) is powered by a rechargeable battery that is supplied by either a solar panel or AC power supply. AQIMoS is equipped with an information system, namely, a server and a graphical user interface, to receive data, calculate the air pollutant standard index (ISPU), and access data. This study also developed an algorithm to reduce packet loss in cellular network-based transmissions. This algorithm allows AQIMoS to perform repeated data transmissions and extend response waiting times according to a received signal strength indicator (RSSI). The test results show that the developed algorithm can reduce packet loss by 9.8-11.6 % in medium/bad conditions (MB, signal < 50%). The AQIMoS test was carried out in a traffic-heavy area about 2 km from Atang Senjaya Airport with moderate air quality.
doi_str_mv 10.1109/ACCESS.2022.3222329
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739337534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9950495</ieee_id><doaj_id>oai_doaj_org_article_cb3ad2b782cf401dabd2885d4592874b</doaj_id><sourcerecordid>2739337534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3</originalsourceid><addsrcrecordid>eNpNkE9LxDAQxYsoKOon2EvBc9ckk7TJsSz-A0Vh9RzSZLpm2TZrmlX221vtIs5lhse8N8Mvy2aUzCkl6rpeLG6WyzkjjM2BMQZMHWVnjJaqAAHl8b_5NLschjUZS46SqM6yuu4aj33Kax_zp9D7FKLvV_lyPyTs8i-f3vPamW3yn5i_YGxD7ExvMV8m0_iNT_uL7KQ1mwEvD_08e7u9eV3cF4_Pdw-L-rGwnMhUUCor5NKCpa4lBhkS5UpOaekawU0pZGtRQEvAupIaWwqliAELRrGmahHOs4cp1wWz1tvoOxP3Ohivf4UQV9rE5O0GtW3AuNElmW05oc40jkkpHBeKyYo3Y9bVlLWN4WOHQ9LrsIv9-L5mFSiASgAft2DasjEMQ8T27yol-ge9ntDrH_T6gH50zSaXR8Q_h1KCcCXgG-Ivfuc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739337534</pqid></control><display><type>article</type><title>Ambient Air Monitoring System with Adaptive Performance Stability</title><source>IEEE Xplore Open Access Journals</source><creator>Purbakawaca, R. ; Yuwono, A.S. ; Subrata, I.D.M. ; Supandi ; Alatas, H.</creator><creatorcontrib>Purbakawaca, R. ; Yuwono, A.S. ; Subrata, I.D.M. ; Supandi ; Alatas, H.</creatorcontrib><description>Air pollution is a significant concern in this era. Pollutants released in large quantities can cause environmental damage and human health problems. The existing monitoring systems are highly precise and sensitive, but they require high laboratory analysis and operational costs. To overcome these problems, an air quality monitoring system is proposed as an alternative solution that can complement the current system. This study aimed to design an inexpensive air quality monitoring system using metal oxide sensors to measure the concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) using laser diffraction, microcontroller, and General Packet Radio Service (GPRS) module. The Air Quality IPB Monitoring System (AQIMoS) is powered by a rechargeable battery that is supplied by either a solar panel or AC power supply. AQIMoS is equipped with an information system, namely, a server and a graphical user interface, to receive data, calculate the air pollutant standard index (ISPU), and access data. This study also developed an algorithm to reduce packet loss in cellular network-based transmissions. This algorithm allows AQIMoS to perform repeated data transmissions and extend response waiting times according to a received signal strength indicator (RSSI). The test results show that the developed algorithm can reduce packet loss by 9.8-11.6 % in medium/bad conditions (MB, signal &lt; 50%). The AQIMoS test was carried out in a traffic-heavy area about 2 km from Atang Senjaya Airport with moderate air quality.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3222329</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive algorithm ; Adaptive algorithms ; Adaptive systems ; Air monitoring ; Air pollution ; air pollution monitoring ; Air quality ; air quality monitoring ; Airports ; Algorithms ; Cellular communication ; Cost analysis ; Data transmission ; Environmental monitoring ; Gas detectors ; Graphical user interface ; low-cost sensors ; Metal oxides ; Microcontrollers ; Monitoring ; Monitoring systems ; Nitrogen dioxide ; Outdoor air quality ; Particulate emissions ; Pollutants ; Pollution measurement ; Pollution monitoring ; Rechargeable batteries ; Sensor systems ; Sensors ; Service modules ; Signal strength ; Sulfur dioxide ; Temperature sensors</subject><ispartof>IEEE access, 2022, Vol.10, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3</citedby><cites>FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3</cites><orcidid>0000-0002-7570-3267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9950495$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Purbakawaca, R.</creatorcontrib><creatorcontrib>Yuwono, A.S.</creatorcontrib><creatorcontrib>Subrata, I.D.M.</creatorcontrib><creatorcontrib>Supandi</creatorcontrib><creatorcontrib>Alatas, H.</creatorcontrib><title>Ambient Air Monitoring System with Adaptive Performance Stability</title><title>IEEE access</title><addtitle>Access</addtitle><description>Air pollution is a significant concern in this era. Pollutants released in large quantities can cause environmental damage and human health problems. The existing monitoring systems are highly precise and sensitive, but they require high laboratory analysis and operational costs. To overcome these problems, an air quality monitoring system is proposed as an alternative solution that can complement the current system. This study aimed to design an inexpensive air quality monitoring system using metal oxide sensors to measure the concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) using laser diffraction, microcontroller, and General Packet Radio Service (GPRS) module. The Air Quality IPB Monitoring System (AQIMoS) is powered by a rechargeable battery that is supplied by either a solar panel or AC power supply. AQIMoS is equipped with an information system, namely, a server and a graphical user interface, to receive data, calculate the air pollutant standard index (ISPU), and access data. This study also developed an algorithm to reduce packet loss in cellular network-based transmissions. This algorithm allows AQIMoS to perform repeated data transmissions and extend response waiting times according to a received signal strength indicator (RSSI). The test results show that the developed algorithm can reduce packet loss by 9.8-11.6 % in medium/bad conditions (MB, signal &lt; 50%). The AQIMoS test was carried out in a traffic-heavy area about 2 km from Atang Senjaya Airport with moderate air quality.</description><subject>Adaptive algorithm</subject><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Air monitoring</subject><subject>Air pollution</subject><subject>air pollution monitoring</subject><subject>Air quality</subject><subject>air quality monitoring</subject><subject>Airports</subject><subject>Algorithms</subject><subject>Cellular communication</subject><subject>Cost analysis</subject><subject>Data transmission</subject><subject>Environmental monitoring</subject><subject>Gas detectors</subject><subject>Graphical user interface</subject><subject>low-cost sensors</subject><subject>Metal oxides</subject><subject>Microcontrollers</subject><subject>Monitoring</subject><subject>Monitoring systems</subject><subject>Nitrogen dioxide</subject><subject>Outdoor air quality</subject><subject>Particulate emissions</subject><subject>Pollutants</subject><subject>Pollution measurement</subject><subject>Pollution monitoring</subject><subject>Rechargeable batteries</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Service modules</subject><subject>Signal strength</subject><subject>Sulfur dioxide</subject><subject>Temperature sensors</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LxDAQxYsoKOon2EvBc9ckk7TJsSz-A0Vh9RzSZLpm2TZrmlX221vtIs5lhse8N8Mvy2aUzCkl6rpeLG6WyzkjjM2BMQZMHWVnjJaqAAHl8b_5NLschjUZS46SqM6yuu4aj33Kax_zp9D7FKLvV_lyPyTs8i-f3vPamW3yn5i_YGxD7ExvMV8m0_iNT_uL7KQ1mwEvD_08e7u9eV3cF4_Pdw-L-rGwnMhUUCor5NKCpa4lBhkS5UpOaekawU0pZGtRQEvAupIaWwqliAELRrGmahHOs4cp1wWz1tvoOxP3Ohivf4UQV9rE5O0GtW3AuNElmW05oc40jkkpHBeKyYo3Y9bVlLWN4WOHQ9LrsIv9-L5mFSiASgAft2DasjEMQ8T27yol-ge9ntDrH_T6gH50zSaXR8Q_h1KCcCXgG-Ivfuc</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Purbakawaca, R.</creator><creator>Yuwono, A.S.</creator><creator>Subrata, I.D.M.</creator><creator>Supandi</creator><creator>Alatas, H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7570-3267</orcidid></search><sort><creationdate>2022</creationdate><title>Ambient Air Monitoring System with Adaptive Performance Stability</title><author>Purbakawaca, R. ; Yuwono, A.S. ; Subrata, I.D.M. ; Supandi ; Alatas, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithm</topic><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Air monitoring</topic><topic>Air pollution</topic><topic>air pollution monitoring</topic><topic>Air quality</topic><topic>air quality monitoring</topic><topic>Airports</topic><topic>Algorithms</topic><topic>Cellular communication</topic><topic>Cost analysis</topic><topic>Data transmission</topic><topic>Environmental monitoring</topic><topic>Gas detectors</topic><topic>Graphical user interface</topic><topic>low-cost sensors</topic><topic>Metal oxides</topic><topic>Microcontrollers</topic><topic>Monitoring</topic><topic>Monitoring systems</topic><topic>Nitrogen dioxide</topic><topic>Outdoor air quality</topic><topic>Particulate emissions</topic><topic>Pollutants</topic><topic>Pollution measurement</topic><topic>Pollution monitoring</topic><topic>Rechargeable batteries</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Service modules</topic><topic>Signal strength</topic><topic>Sulfur dioxide</topic><topic>Temperature sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purbakawaca, R.</creatorcontrib><creatorcontrib>Yuwono, A.S.</creatorcontrib><creatorcontrib>Subrata, I.D.M.</creatorcontrib><creatorcontrib>Supandi</creatorcontrib><creatorcontrib>Alatas, H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Purbakawaca, R.</au><au>Yuwono, A.S.</au><au>Subrata, I.D.M.</au><au>Supandi</au><au>Alatas, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ambient Air Monitoring System with Adaptive Performance Stability</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Air pollution is a significant concern in this era. Pollutants released in large quantities can cause environmental damage and human health problems. The existing monitoring systems are highly precise and sensitive, but they require high laboratory analysis and operational costs. To overcome these problems, an air quality monitoring system is proposed as an alternative solution that can complement the current system. This study aimed to design an inexpensive air quality monitoring system using metal oxide sensors to measure the concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) using laser diffraction, microcontroller, and General Packet Radio Service (GPRS) module. The Air Quality IPB Monitoring System (AQIMoS) is powered by a rechargeable battery that is supplied by either a solar panel or AC power supply. AQIMoS is equipped with an information system, namely, a server and a graphical user interface, to receive data, calculate the air pollutant standard index (ISPU), and access data. This study also developed an algorithm to reduce packet loss in cellular network-based transmissions. This algorithm allows AQIMoS to perform repeated data transmissions and extend response waiting times according to a received signal strength indicator (RSSI). The test results show that the developed algorithm can reduce packet loss by 9.8-11.6 % in medium/bad conditions (MB, signal &lt; 50%). The AQIMoS test was carried out in a traffic-heavy area about 2 km from Atang Senjaya Airport with moderate air quality.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3222329</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7570-3267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2739337534
source IEEE Xplore Open Access Journals
subjects Adaptive algorithm
Adaptive algorithms
Adaptive systems
Air monitoring
Air pollution
air pollution monitoring
Air quality
air quality monitoring
Airports
Algorithms
Cellular communication
Cost analysis
Data transmission
Environmental monitoring
Gas detectors
Graphical user interface
low-cost sensors
Metal oxides
Microcontrollers
Monitoring
Monitoring systems
Nitrogen dioxide
Outdoor air quality
Particulate emissions
Pollutants
Pollution measurement
Pollution monitoring
Rechargeable batteries
Sensor systems
Sensors
Service modules
Signal strength
Sulfur dioxide
Temperature sensors
title Ambient Air Monitoring System with Adaptive Performance Stability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ambient%20Air%20Monitoring%20System%20with%20Adaptive%20Performance%20Stability&rft.jtitle=IEEE%20access&rft.au=Purbakawaca,%20R.&rft.date=2022&rft.volume=10&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3222329&rft_dat=%3Cproquest_cross%3E2739337534%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-1187e48c3c1df0ae2e09d64116db54a658fce53f03cd61ac65990a3c3a92b7fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739337534&rft_id=info:pmid/&rft_ieee_id=9950495&rfr_iscdi=true