Loading…

Holocene Paleoenvironmental Evolution of a Semi-Enclosed Shallow Aegean Basin: A Combination of Seismic Stratigraphy and Sediment Core Proxies

The island of Astypalea (Greece), known for its rich and pristine archeological sites, encompasses a semi-enclosed silled basin that has been very susceptible to global sea levels and regional climate changes due to its relatively modern shallow sill of 4.7 m water deep that connects the Vathy bay w...

Full description

Saved in:
Bibliographic Details
Published in:Water (Basel) 2022-11, Vol.14 (22), p.3688
Main Authors: Noti, Alexandra, Lourens, Lucas J., Geraga, Maria, Wesselingh, Frank P., Haghipour, Negar, Georgiou, Nikos, Christodoulou, Dimitris, Sergiou, Spyros, Dimas, Xenophon, Vlachopoulos, Andreas G., Papatheodorou, George
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The island of Astypalea (Greece), known for its rich and pristine archeological sites, encompasses a semi-enclosed silled basin that has been very susceptible to global sea levels and regional climate changes due to its relatively modern shallow sill of 4.7 m water deep that connects the Vathy bay with the adjacent Aegean Sea. To identify the causal relationship between regional climate, sea-level trajectories, and environmental change and their potential impact on hominine habitats on the island, we investigated a high-resolution seismic profile together with sediment, stable isotope, geochemical, and biotic proxies retrieved from a marine sediment core (ASTC1). Our results show that the basin was once isolated, and a marine inundation occurred at around 7.3 ka BP, which is older than expected, based on global sea level reconstructions. The entire transition from isolation to full marine conditions was accomplished in three major phases: (1) non-marine isolated conditions between 9–7.3 ka BP, (2) semi-isolated hypersaline marsh and lagoonal conditions between 7.3 and 4.1 ka BP, and (3) semi-isolated shallow marine conditions of today (4.1 ka BP to present). High water alkalinity, elevated organic content, and heavier isotopic signals indicate relatively arid conditions in the region that favored Sr-rich carbonate precipitation within the 7.3–6 ka BP interval. On the other hand, freshwater biota, along with a high Corg/N ratio and lighter isotopic signal, showed wetter conditions, at least for the intervals 8–7.3 ka and 6–5.4 ka BP, in contrast to the aridification trend seen as 4.1 ka to present. Finally, the hominine habitat evolution at around 6 ka BP might be attributed to the wetter conditions and the freshwater source provided by the bay at that time.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14223688