Loading…

Monitoring Coastal Changes and Assessing Protection Structures at the Damietta Promontory, Nile Delta, Egypt, to Secure Sustainability in the Context of Climate Changes

The Damietta Promontory is a distinct coastal region in the Nile Delta Egypt, which comprises several communities with strategic economic projects. The promontory has experienced numerous inundation crises due to anthropogenic intervention and/or sea level rise (SLR). The recorded rate of erosion de...

Full description

Saved in:
Bibliographic Details
Published in:Sustainability 2022-11, Vol.14 (22), p.15415
Main Authors: El-Asmar, Hesham M, Taha, Maysa M. N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Damietta Promontory is a distinct coastal region in the Nile Delta Egypt, which comprises several communities with strategic economic projects. The promontory has experienced numerous inundation crises due to anthropogenic intervention and/or sea level rise (SLR). The recorded rate of erosion detected is from −18 to −53 m/yr., and −28 to −210 m/yr. along the promontory’s western and eastern coasts, respectively, with a total loss of about 3 km during the past century. It is critical to ensure sustainability of this coastal region in case of future climate changes and expected SLR; accordingly, the state has implemented a long-term plan of coastal protection. The current study updates the coastal changes and assesses the efficiency of the protection structures. For such study, Ikonos satellite images of 1 m high-resolution were acquired on 30 July 2014 and 10 August 2022, respectively. These were compared to multitemporal Landsat images dated 30 June 2015, 29 September 1987, 15 October 1984, and the Landsat 4 MSS images dated 20 October 1972. The results confirm the presence of accretion along the western jetty of the Damietta Harbor with an average of +10.91 m/yr., while erosion of −4.7 m/yr. was detected at the east of the eastern harbor jetty. At the detached breakwaters along Ras El-Bar, an accretion of +4 m/yr. was detected, and then erosion was measured westward to the tip of the detached breakwaters with an average of −1.77 m/yr. At the eastern coast of the promontory, eastward erosion was recorded with rates of −44.16, −34.33, and −20.33 m/yr., respectively, then the erosion stopped after the construction of the seawall. The current study confirms the efficiency of the detached breakwaters and seawalls as coastal protection structures. However, the seawalls lack swimming-friendly long, wide beaches like those found on the detached breakwaters. The groins seem ineffective with rips and reversed currents like those at Ras El -Bar. To develop a fishing community at the Manzala triangle similar in nature to Venice, it is recommended to extend the seawall to 12 km and then construct detached breakwaters eastward to the El-Diba inlet. To secure sustainability of the coast, a continuous maintenance of the protection structures to keep their elevations between 4–6 m above sea level (a.s.l.) is a critical task, in order to reduce the potential risks that could arise from a tsunami, with sand nourishment as a preferred strategy.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142215415