Loading…
Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion
An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias volt...
Saved in:
Published in: | Sensors and actuators. A. Physical. 2022-10, Vol.345, p.113813, Article 113813 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23 |
container_end_page | |
container_issue | |
container_start_page | 113813 |
container_title | Sensors and actuators. A. Physical. |
container_volume | 345 |
creator | Monsalve, Jorge M. Melnikov, Anton Stolz, Michael Mrosk, Andreas Jongmanns, Marcel Wall, Franziska Langa, Sergiu Marica-Bercu, Ioana Brändel, Tim Kircher, Marco Schenk, Hermann A.G. Kaiser, Bert Schenk, Harald |
description | An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range.
[Display omitted]
•A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength. |
doi_str_mv | 10.1016/j.sna.2022.113813 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739798425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424722004484</els_id><sourcerecordid>2739798425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1615tUlxJYMvGNCFbg1pegspnaQmqeC_N0NdCxfuWZxzHx9C1wRXBJPmdqyi0xXFlFaEMEnYCdoQKVjJcNOeog1uKS855eIcXcQ4YowZE2KDPt-C90ORy3hnYE5HqV2hbSiNX-YJ-gImMCn4mHSyplimFHT0LsssXOwXA6HodMxO74pJJwh6Kg4-We8u0dmgpwhXf32LPh4f3nfP5f716WV3vy8Na3gqqekIa2UvgNA2X9kJ0HXNMW8Mo3IQkkrAcuAajMhP1R1Iw2XbGdYyLYGyLbpZ587Bfy0Qkxr9ElxeqahgrWglp3V2kdVl8jcxwKDmYA86_CiC1RGjGlXGqI4Y1YoxZ-7WDOTzvy0EFY2FjKq3IWNRvbf_pH8B-l960w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739798425</pqid></control><display><type>article</type><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><source>ScienceDirect Freedom Collection</source><creator>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</creator><creatorcontrib>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</creatorcontrib><description>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range.
[Display omitted]
•A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2022.113813</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coulomb-actuated microbeam ; Damping ; Electrostatic transduction ; Frequency ranges ; Micromachined ultrasonic transducer ; Micromachining ; Noise ; Noise levels ; Radio frequency ; Radio frequency interference ; Range finders ; Sound ; Sound pressure ; Transducers ; Ultrasonic transducers</subject><ispartof>Sensors and actuators. A. Physical., 2022-10, Vol.345, p.113813, Article 113813</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Oct 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</citedby><cites>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Monsalve, Jorge M.</creatorcontrib><creatorcontrib>Melnikov, Anton</creatorcontrib><creatorcontrib>Stolz, Michael</creatorcontrib><creatorcontrib>Mrosk, Andreas</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Wall, Franziska</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Marica-Bercu, Ioana</creatorcontrib><creatorcontrib>Brändel, Tim</creatorcontrib><creatorcontrib>Kircher, Marco</creatorcontrib><creatorcontrib>Schenk, Hermann A.G.</creatorcontrib><creatorcontrib>Kaiser, Bert</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><title>Sensors and actuators. A. Physical.</title><description>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range.
[Display omitted]
•A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</description><subject>Coulomb-actuated microbeam</subject><subject>Damping</subject><subject>Electrostatic transduction</subject><subject>Frequency ranges</subject><subject>Micromachined ultrasonic transducer</subject><subject>Micromachining</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Radio frequency</subject><subject>Radio frequency interference</subject><subject>Range finders</subject><subject>Sound</subject><subject>Sound pressure</subject><subject>Transducers</subject><subject>Ultrasonic transducers</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1615tUlxJYMvGNCFbg1pegspnaQmqeC_N0NdCxfuWZxzHx9C1wRXBJPmdqyi0xXFlFaEMEnYCdoQKVjJcNOeog1uKS855eIcXcQ4YowZE2KDPt-C90ORy3hnYE5HqV2hbSiNX-YJ-gImMCn4mHSyplimFHT0LsssXOwXA6HodMxO74pJJwh6Kg4-We8u0dmgpwhXf32LPh4f3nfP5f716WV3vy8Na3gqqekIa2UvgNA2X9kJ0HXNMW8Mo3IQkkrAcuAajMhP1R1Iw2XbGdYyLYGyLbpZ587Bfy0Qkxr9ElxeqahgrWglp3V2kdVl8jcxwKDmYA86_CiC1RGjGlXGqI4Y1YoxZ-7WDOTzvy0EFY2FjKq3IWNRvbf_pH8B-l960w</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Monsalve, Jorge M.</creator><creator>Melnikov, Anton</creator><creator>Stolz, Michael</creator><creator>Mrosk, Andreas</creator><creator>Jongmanns, Marcel</creator><creator>Wall, Franziska</creator><creator>Langa, Sergiu</creator><creator>Marica-Bercu, Ioana</creator><creator>Brändel, Tim</creator><creator>Kircher, Marco</creator><creator>Schenk, Hermann A.G.</creator><creator>Kaiser, Bert</creator><creator>Schenk, Harald</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20221001</creationdate><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><author>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coulomb-actuated microbeam</topic><topic>Damping</topic><topic>Electrostatic transduction</topic><topic>Frequency ranges</topic><topic>Micromachined ultrasonic transducer</topic><topic>Micromachining</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Radio frequency</topic><topic>Radio frequency interference</topic><topic>Range finders</topic><topic>Sound</topic><topic>Sound pressure</topic><topic>Transducers</topic><topic>Ultrasonic transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsalve, Jorge M.</creatorcontrib><creatorcontrib>Melnikov, Anton</creatorcontrib><creatorcontrib>Stolz, Michael</creatorcontrib><creatorcontrib>Mrosk, Andreas</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Wall, Franziska</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Marica-Bercu, Ioana</creatorcontrib><creatorcontrib>Brändel, Tim</creatorcontrib><creatorcontrib>Kircher, Marco</creatorcontrib><creatorcontrib>Schenk, Hermann A.G.</creatorcontrib><creatorcontrib>Kaiser, Bert</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsalve, Jorge M.</au><au>Melnikov, Anton</au><au>Stolz, Michael</au><au>Mrosk, Andreas</au><au>Jongmanns, Marcel</au><au>Wall, Franziska</au><au>Langa, Sergiu</au><au>Marica-Bercu, Ioana</au><au>Brändel, Tim</au><au>Kircher, Marco</au><au>Schenk, Hermann A.G.</au><au>Kaiser, Bert</au><au>Schenk, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>345</volume><spage>113813</spage><pages>113813-</pages><artnum>113813</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range.
[Display omitted]
•A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2022.113813</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-4247 |
ispartof | Sensors and actuators. A. Physical., 2022-10, Vol.345, p.113813, Article 113813 |
issn | 0924-4247 1873-3069 |
language | eng |
recordid | cdi_proquest_journals_2739798425 |
source | ScienceDirect Freedom Collection |
subjects | Coulomb-actuated microbeam Damping Electrostatic transduction Frequency ranges Micromachined ultrasonic transducer Micromachining Noise Noise levels Radio frequency Radio frequency interference Range finders Sound Sound pressure Transducers Ultrasonic transducers |
title | Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proof%20of%20concept%20of%20an%20air-coupled%20electrostatic%20ultrasonic%20transducer%20based%20on%20lateral%20motion&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Monsalve,%20Jorge%20M.&rft.date=2022-10-01&rft.volume=345&rft.spage=113813&rft.pages=113813-&rft.artnum=113813&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2022.113813&rft_dat=%3Cproquest_cross%3E2739798425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739798425&rft_id=info:pmid/&rfr_iscdi=true |