Loading…

Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion

An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias volt...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. A. Physical. 2022-10, Vol.345, p.113813, Article 113813
Main Authors: Monsalve, Jorge M., Melnikov, Anton, Stolz, Michael, Mrosk, Andreas, Jongmanns, Marcel, Wall, Franziska, Langa, Sergiu, Marica-Bercu, Ioana, Brändel, Tim, Kircher, Marco, Schenk, Hermann A.G., Kaiser, Bert, Schenk, Harald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23
cites cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23
container_end_page
container_issue
container_start_page 113813
container_title Sensors and actuators. A. Physical.
container_volume 345
creator Monsalve, Jorge M.
Melnikov, Anton
Stolz, Michael
Mrosk, Andreas
Jongmanns, Marcel
Wall, Franziska
Langa, Sergiu
Marica-Bercu, Ioana
Brändel, Tim
Kircher, Marco
Schenk, Hermann A.G.
Kaiser, Bert
Schenk, Harald
description An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range. [Display omitted] •A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.
doi_str_mv 10.1016/j.sna.2022.113813
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2739798425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924424722004484</els_id><sourcerecordid>2739798425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcF1615tUlxJYMvGNCFbg1pegspnaQmqeC_N0NdCxfuWZxzHx9C1wRXBJPmdqyi0xXFlFaEMEnYCdoQKVjJcNOeog1uKS855eIcXcQ4YowZE2KDPt-C90ORy3hnYE5HqV2hbSiNX-YJ-gImMCn4mHSyplimFHT0LsssXOwXA6HodMxO74pJJwh6Kg4-We8u0dmgpwhXf32LPh4f3nfP5f716WV3vy8Na3gqqekIa2UvgNA2X9kJ0HXNMW8Mo3IQkkrAcuAajMhP1R1Iw2XbGdYyLYGyLbpZ587Bfy0Qkxr9ElxeqahgrWglp3V2kdVl8jcxwKDmYA86_CiC1RGjGlXGqI4Y1YoxZ-7WDOTzvy0EFY2FjKq3IWNRvbf_pH8B-l960w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739798425</pqid></control><display><type>article</type><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><source>ScienceDirect Freedom Collection</source><creator>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</creator><creatorcontrib>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</creatorcontrib><description>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range. [Display omitted] •A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</description><identifier>ISSN: 0924-4247</identifier><identifier>EISSN: 1873-3069</identifier><identifier>DOI: 10.1016/j.sna.2022.113813</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Coulomb-actuated microbeam ; Damping ; Electrostatic transduction ; Frequency ranges ; Micromachined ultrasonic transducer ; Micromachining ; Noise ; Noise levels ; Radio frequency ; Radio frequency interference ; Range finders ; Sound ; Sound pressure ; Transducers ; Ultrasonic transducers</subject><ispartof>Sensors and actuators. A. Physical., 2022-10, Vol.345, p.113813, Article 113813</ispartof><rights>2022 The Authors</rights><rights>Copyright Elsevier BV Oct 1, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</citedby><cites>FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Monsalve, Jorge M.</creatorcontrib><creatorcontrib>Melnikov, Anton</creatorcontrib><creatorcontrib>Stolz, Michael</creatorcontrib><creatorcontrib>Mrosk, Andreas</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Wall, Franziska</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Marica-Bercu, Ioana</creatorcontrib><creatorcontrib>Brändel, Tim</creatorcontrib><creatorcontrib>Kircher, Marco</creatorcontrib><creatorcontrib>Schenk, Hermann A.G.</creatorcontrib><creatorcontrib>Kaiser, Bert</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><title>Sensors and actuators. A. Physical.</title><description>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range. [Display omitted] •A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</description><subject>Coulomb-actuated microbeam</subject><subject>Damping</subject><subject>Electrostatic transduction</subject><subject>Frequency ranges</subject><subject>Micromachined ultrasonic transducer</subject><subject>Micromachining</subject><subject>Noise</subject><subject>Noise levels</subject><subject>Radio frequency</subject><subject>Radio frequency interference</subject><subject>Range finders</subject><subject>Sound</subject><subject>Sound pressure</subject><subject>Transducers</subject><subject>Ultrasonic transducers</subject><issn>0924-4247</issn><issn>1873-3069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcF1615tUlxJYMvGNCFbg1pegspnaQmqeC_N0NdCxfuWZxzHx9C1wRXBJPmdqyi0xXFlFaEMEnYCdoQKVjJcNOeog1uKS855eIcXcQ4YowZE2KDPt-C90ORy3hnYE5HqV2hbSiNX-YJ-gImMCn4mHSyplimFHT0LsssXOwXA6HodMxO74pJJwh6Kg4-We8u0dmgpwhXf32LPh4f3nfP5f716WV3vy8Na3gqqekIa2UvgNA2X9kJ0HXNMW8Mo3IQkkrAcuAajMhP1R1Iw2XbGdYyLYGyLbpZ587Bfy0Qkxr9ElxeqahgrWglp3V2kdVl8jcxwKDmYA86_CiC1RGjGlXGqI4Y1YoxZ-7WDOTzvy0EFY2FjKq3IWNRvbf_pH8B-l960w</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Monsalve, Jorge M.</creator><creator>Melnikov, Anton</creator><creator>Stolz, Michael</creator><creator>Mrosk, Andreas</creator><creator>Jongmanns, Marcel</creator><creator>Wall, Franziska</creator><creator>Langa, Sergiu</creator><creator>Marica-Bercu, Ioana</creator><creator>Brändel, Tim</creator><creator>Kircher, Marco</creator><creator>Schenk, Hermann A.G.</creator><creator>Kaiser, Bert</creator><creator>Schenk, Harald</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20221001</creationdate><title>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</title><author>Monsalve, Jorge M. ; Melnikov, Anton ; Stolz, Michael ; Mrosk, Andreas ; Jongmanns, Marcel ; Wall, Franziska ; Langa, Sergiu ; Marica-Bercu, Ioana ; Brändel, Tim ; Kircher, Marco ; Schenk, Hermann A.G. ; Kaiser, Bert ; Schenk, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coulomb-actuated microbeam</topic><topic>Damping</topic><topic>Electrostatic transduction</topic><topic>Frequency ranges</topic><topic>Micromachined ultrasonic transducer</topic><topic>Micromachining</topic><topic>Noise</topic><topic>Noise levels</topic><topic>Radio frequency</topic><topic>Radio frequency interference</topic><topic>Range finders</topic><topic>Sound</topic><topic>Sound pressure</topic><topic>Transducers</topic><topic>Ultrasonic transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monsalve, Jorge M.</creatorcontrib><creatorcontrib>Melnikov, Anton</creatorcontrib><creatorcontrib>Stolz, Michael</creatorcontrib><creatorcontrib>Mrosk, Andreas</creatorcontrib><creatorcontrib>Jongmanns, Marcel</creatorcontrib><creatorcontrib>Wall, Franziska</creatorcontrib><creatorcontrib>Langa, Sergiu</creatorcontrib><creatorcontrib>Marica-Bercu, Ioana</creatorcontrib><creatorcontrib>Brändel, Tim</creatorcontrib><creatorcontrib>Kircher, Marco</creatorcontrib><creatorcontrib>Schenk, Hermann A.G.</creatorcontrib><creatorcontrib>Kaiser, Bert</creatorcontrib><creatorcontrib>Schenk, Harald</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. A. Physical.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monsalve, Jorge M.</au><au>Melnikov, Anton</au><au>Stolz, Michael</au><au>Mrosk, Andreas</au><au>Jongmanns, Marcel</au><au>Wall, Franziska</au><au>Langa, Sergiu</au><au>Marica-Bercu, Ioana</au><au>Brändel, Tim</au><au>Kircher, Marco</au><au>Schenk, Hermann A.G.</au><au>Kaiser, Bert</au><au>Schenk, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion</atitle><jtitle>Sensors and actuators. A. Physical.</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>345</volume><spage>113813</spage><pages>113813-</pages><artnum>113813</artnum><issn>0924-4247</issn><eissn>1873-3069</eissn><abstract>An alternative implementation of an electrostatic MUT (Micromachined Ultrasonic Transducer), relying on multiple beams that displace along the chip’s surface instead of a single membrane displacing perpendicular to it, is presented in this work. With this approach, a design requiring a low bias voltage (24 V) and occupying a small area (3.3 ×3.3 mm², 2D/λ≈0.77) was shown to generate a sound pressure level of 82 dB (re. 20 µPa-rms) at 40 kHz and a distance of 8.9 cm. The high level of damping allows this transducer to operate in a wide frequency range (35–63 kHz). The operation of this device as an ultrasonic receiver was also proven. An implementation of this transducer as a rangefinder requires a strong reduction in the noise level, particularly coming from radio-frequency interference, in order to increase its detection range. [Display omitted] •A transducer concept based on lateral motion (instead of vertical) is used for transmitting and receiving airborne ultrasound.•A high fluidic damping was observed, enabling a transmission bandwidth of nearly an octave (35–65 kHz).•This electrostatic device is based on an array of microbeams and has a sidelength smaller than half a wavelength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sna.2022.113813</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-4247
ispartof Sensors and actuators. A. Physical., 2022-10, Vol.345, p.113813, Article 113813
issn 0924-4247
1873-3069
language eng
recordid cdi_proquest_journals_2739798425
source ScienceDirect Freedom Collection
subjects Coulomb-actuated microbeam
Damping
Electrostatic transduction
Frequency ranges
Micromachined ultrasonic transducer
Micromachining
Noise
Noise levels
Radio frequency
Radio frequency interference
Range finders
Sound
Sound pressure
Transducers
Ultrasonic transducers
title Proof of concept of an air-coupled electrostatic ultrasonic transducer based on lateral motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proof%20of%20concept%20of%20an%20air-coupled%20electrostatic%20ultrasonic%20transducer%20based%20on%20lateral%20motion&rft.jtitle=Sensors%20and%20actuators.%20A.%20Physical.&rft.au=Monsalve,%20Jorge%20M.&rft.date=2022-10-01&rft.volume=345&rft.spage=113813&rft.pages=113813-&rft.artnum=113813&rft.issn=0924-4247&rft.eissn=1873-3069&rft_id=info:doi/10.1016/j.sna.2022.113813&rft_dat=%3Cproquest_cross%3E2739798425%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-2cb1398d7e129424b7ea554046c328f7828e08f4aec78735be8c489bc393a8e23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739798425&rft_id=info:pmid/&rfr_iscdi=true