Loading…

Fault Diagnosis Method for Bearing Based on Digital Twin

The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis fram...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2022-11, Vol.2022, p.1-15
Main Authors: Xie, Xuyang, Yang, Zichun, Wu, Wenhao, Zhang, Lei, Wang, Xuefeng, Zeng, Guoqing, Chen, Guobing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3
cites cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3
container_end_page 15
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2022
creator Xie, Xuyang
Yang, Zichun
Wu, Wenhao
Zhang, Lei
Wang, Xuefeng
Zeng, Guoqing
Chen, Guobing
description The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.
doi_str_mv 10.1155/2022/2982746
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740357259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740357259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</originalsourceid><addsrcrecordid>eNp90MFOAjEQBuDGaCKiNx-giUddaafttj0KiJpgvGDirSm7LZTgFtvdEN_eJXD2NHP48k_mR-iWkkdKhRgBARiBViB5eYYGVJSsEJTL834nwAsK7OsSXeW8IQSooGqA1Mx22xZPg101MYeM3127jjX2MeGxsyk0Kzy22dU4Nr1ahdZu8WIfmmt04e02u5vTHKLP2fNi8lrMP17eJk_zomJMtoVgWjDuqCayZqVWpdcWpK6847KytfQKaMlrpW0FSy4YYdorz5fSlWQJumJDdHfM3aX407ncmk3sUtOfNP2bhAkJQvfq4aiqFHNOzptdCt82_RpKzKEbc-jGnLrp-f2Rr0NT2334X_8B9gFgxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740357259</pqid></control><display><type>article</type><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing</creator><contributor>Pozo, Francesc ; Francesc Pozo</contributor><creatorcontrib>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing ; Pozo, Francesc ; Francesc Pozo</creatorcontrib><description>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/2982746</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial neural networks ; Bearings ; Component reliability ; Deep learning ; Digital twins ; Engineering ; Fault diagnosis ; Machinery ; Methods ; Neural networks ; Performance degradation ; Rotating machinery ; Self organizing maps ; Sensors ; Signal processing ; Simulation ; Support vector machines ; Wavelet transforms</subject><ispartof>Mathematical problems in engineering, 2022-11, Vol.2022, p.1-15</ispartof><rights>Copyright © 2022 Xuyang Xie et al.</rights><rights>Copyright © 2022 Xuyang Xie et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</citedby><cites>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</cites><orcidid>0000-0003-3687-2444 ; 0000-0001-7624-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2740357259/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2740357259?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Pozo, Francesc</contributor><contributor>Francesc Pozo</contributor><creatorcontrib>Xie, Xuyang</creatorcontrib><creatorcontrib>Yang, Zichun</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Zeng, Guoqing</creatorcontrib><creatorcontrib>Chen, Guobing</creatorcontrib><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><title>Mathematical problems in engineering</title><description>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Bearings</subject><subject>Component reliability</subject><subject>Deep learning</subject><subject>Digital twins</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Machinery</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance degradation</subject><subject>Rotating machinery</subject><subject>Self organizing maps</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Simulation</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90MFOAjEQBuDGaCKiNx-giUddaafttj0KiJpgvGDirSm7LZTgFtvdEN_eJXD2NHP48k_mR-iWkkdKhRgBARiBViB5eYYGVJSsEJTL834nwAsK7OsSXeW8IQSooGqA1Mx22xZPg101MYeM3127jjX2MeGxsyk0Kzy22dU4Nr1ahdZu8WIfmmt04e02u5vTHKLP2fNi8lrMP17eJk_zomJMtoVgWjDuqCayZqVWpdcWpK6847KytfQKaMlrpW0FSy4YYdorz5fSlWQJumJDdHfM3aX407ncmk3sUtOfNP2bhAkJQvfq4aiqFHNOzptdCt82_RpKzKEbc-jGnLrp-f2Rr0NT2334X_8B9gFgxg</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Xie, Xuyang</creator><creator>Yang, Zichun</creator><creator>Wu, Wenhao</creator><creator>Zhang, Lei</creator><creator>Wang, Xuefeng</creator><creator>Zeng, Guoqing</creator><creator>Chen, Guobing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3687-2444</orcidid><orcidid>https://orcid.org/0000-0001-7624-9230</orcidid></search><sort><creationdate>20221117</creationdate><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><author>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Bearings</topic><topic>Component reliability</topic><topic>Deep learning</topic><topic>Digital twins</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Machinery</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance degradation</topic><topic>Rotating machinery</topic><topic>Self organizing maps</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Simulation</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xuyang</creatorcontrib><creatorcontrib>Yang, Zichun</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Zeng, Guoqing</creatorcontrib><creatorcontrib>Chen, Guobing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xuyang</au><au>Yang, Zichun</au><au>Wu, Wenhao</au><au>Zhang, Lei</au><au>Wang, Xuefeng</au><au>Zeng, Guoqing</au><au>Chen, Guobing</au><au>Pozo, Francesc</au><au>Francesc Pozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis Method for Bearing Based on Digital Twin</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-11-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2982746</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3687-2444</orcidid><orcidid>https://orcid.org/0000-0001-7624-9230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2022-11, Vol.2022, p.1-15
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2740357259
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database
subjects Accuracy
Artificial neural networks
Bearings
Component reliability
Deep learning
Digital twins
Engineering
Fault diagnosis
Machinery
Methods
Neural networks
Performance degradation
Rotating machinery
Self organizing maps
Sensors
Signal processing
Simulation
Support vector machines
Wavelet transforms
title Fault Diagnosis Method for Bearing Based on Digital Twin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20Method%20for%20Bearing%20Based%20on%20Digital%20Twin&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xie,%20Xuyang&rft.date=2022-11-17&rft.volume=2022&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/2982746&rft_dat=%3Cproquest_cross%3E2740357259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740357259&rft_id=info:pmid/&rfr_iscdi=true