Loading…
Fault Diagnosis Method for Bearing Based on Digital Twin
The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis fram...
Saved in:
Published in: | Mathematical problems in engineering 2022-11, Vol.2022, p.1-15 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3 |
container_end_page | 15 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2022 |
creator | Xie, Xuyang Yang, Zichun Wu, Wenhao Zhang, Lei Wang, Xuefeng Zeng, Guoqing Chen, Guobing |
description | The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data. |
doi_str_mv | 10.1155/2022/2982746 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740357259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740357259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</originalsourceid><addsrcrecordid>eNp90MFOAjEQBuDGaCKiNx-giUddaafttj0KiJpgvGDirSm7LZTgFtvdEN_eJXD2NHP48k_mR-iWkkdKhRgBARiBViB5eYYGVJSsEJTL834nwAsK7OsSXeW8IQSooGqA1Mx22xZPg101MYeM3127jjX2MeGxsyk0Kzy22dU4Nr1ahdZu8WIfmmt04e02u5vTHKLP2fNi8lrMP17eJk_zomJMtoVgWjDuqCayZqVWpdcWpK6847KytfQKaMlrpW0FSy4YYdorz5fSlWQJumJDdHfM3aX407ncmk3sUtOfNP2bhAkJQvfq4aiqFHNOzptdCt82_RpKzKEbc-jGnLrp-f2Rr0NT2334X_8B9gFgxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740357259</pqid></control><display><type>article</type><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database</source><creator>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing</creator><contributor>Pozo, Francesc ; Francesc Pozo</contributor><creatorcontrib>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing ; Pozo, Francesc ; Francesc Pozo</creatorcontrib><description>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2022/2982746</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Artificial neural networks ; Bearings ; Component reliability ; Deep learning ; Digital twins ; Engineering ; Fault diagnosis ; Machinery ; Methods ; Neural networks ; Performance degradation ; Rotating machinery ; Self organizing maps ; Sensors ; Signal processing ; Simulation ; Support vector machines ; Wavelet transforms</subject><ispartof>Mathematical problems in engineering, 2022-11, Vol.2022, p.1-15</ispartof><rights>Copyright © 2022 Xuyang Xie et al.</rights><rights>Copyright © 2022 Xuyang Xie et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</citedby><cites>FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</cites><orcidid>0000-0003-3687-2444 ; 0000-0001-7624-9230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2740357259/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2740357259?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Pozo, Francesc</contributor><contributor>Francesc Pozo</contributor><creatorcontrib>Xie, Xuyang</creatorcontrib><creatorcontrib>Yang, Zichun</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Zeng, Guoqing</creatorcontrib><creatorcontrib>Chen, Guobing</creatorcontrib><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><title>Mathematical problems in engineering</title><description>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Bearings</subject><subject>Component reliability</subject><subject>Deep learning</subject><subject>Digital twins</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Machinery</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance degradation</subject><subject>Rotating machinery</subject><subject>Self organizing maps</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Simulation</subject><subject>Support vector machines</subject><subject>Wavelet transforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90MFOAjEQBuDGaCKiNx-giUddaafttj0KiJpgvGDirSm7LZTgFtvdEN_eJXD2NHP48k_mR-iWkkdKhRgBARiBViB5eYYGVJSsEJTL834nwAsK7OsSXeW8IQSooGqA1Mx22xZPg101MYeM3127jjX2MeGxsyk0Kzy22dU4Nr1ahdZu8WIfmmt04e02u5vTHKLP2fNi8lrMP17eJk_zomJMtoVgWjDuqCayZqVWpdcWpK6847KytfQKaMlrpW0FSy4YYdorz5fSlWQJumJDdHfM3aX407ncmk3sUtOfNP2bhAkJQvfq4aiqFHNOzptdCt82_RpKzKEbc-jGnLrp-f2Rr0NT2334X_8B9gFgxg</recordid><startdate>20221117</startdate><enddate>20221117</enddate><creator>Xie, Xuyang</creator><creator>Yang, Zichun</creator><creator>Wu, Wenhao</creator><creator>Zhang, Lei</creator><creator>Wang, Xuefeng</creator><creator>Zeng, Guoqing</creator><creator>Chen, Guobing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3687-2444</orcidid><orcidid>https://orcid.org/0000-0001-7624-9230</orcidid></search><sort><creationdate>20221117</creationdate><title>Fault Diagnosis Method for Bearing Based on Digital Twin</title><author>Xie, Xuyang ; Yang, Zichun ; Wu, Wenhao ; Zhang, Lei ; Wang, Xuefeng ; Zeng, Guoqing ; Chen, Guobing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Bearings</topic><topic>Component reliability</topic><topic>Deep learning</topic><topic>Digital twins</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Machinery</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance degradation</topic><topic>Rotating machinery</topic><topic>Self organizing maps</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Simulation</topic><topic>Support vector machines</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Xuyang</creatorcontrib><creatorcontrib>Yang, Zichun</creatorcontrib><creatorcontrib>Wu, Wenhao</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Zeng, Guoqing</creatorcontrib><creatorcontrib>Chen, Guobing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Xuyang</au><au>Yang, Zichun</au><au>Wu, Wenhao</au><au>Zhang, Lei</au><au>Wang, Xuefeng</au><au>Zeng, Guoqing</au><au>Chen, Guobing</au><au>Pozo, Francesc</au><au>Francesc Pozo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis Method for Bearing Based on Digital Twin</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2022-11-17</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The bearing is an essential component of rotating machinery, as its reliability and running state have a direct impact on the machinery’s performance. Considering that deep learning-based fault diagnosis methods for bearing require a large amount of labelled sample data, a novel fault diagnosis framework based on digital twin is proposed. In the case of fault data available, self-organizing maps with minimum quantization error and support vector machine are employed to analyze the data. Where fault data is unavailable, a bearing digital twin model is first constructed to simulate the data, and the convolutional neural network combined with transfer learning is utilized to diagnose the bearing faults. Then, the law of bearing performance degradation is investigated. The effectiveness of the proposed method is verified using bearing vibration data.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2022/2982746</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3687-2444</orcidid><orcidid>https://orcid.org/0000-0001-7624-9230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2022-11, Vol.2022, p.1-15 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2740357259 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database |
subjects | Accuracy Artificial neural networks Bearings Component reliability Deep learning Digital twins Engineering Fault diagnosis Machinery Methods Neural networks Performance degradation Rotating machinery Self organizing maps Sensors Signal processing Simulation Support vector machines Wavelet transforms |
title | Fault Diagnosis Method for Bearing Based on Digital Twin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A18%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20Method%20for%20Bearing%20Based%20on%20Digital%20Twin&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xie,%20Xuyang&rft.date=2022-11-17&rft.volume=2022&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2022/2982746&rft_dat=%3Cproquest_cross%3E2740357259%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-539534e1907d36986f9a279cfe47cad7f82164d89ac2b453039f8f4b7e60b29c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740357259&rft_id=info:pmid/&rfr_iscdi=true |