Loading…

Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer

Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of el...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619
Main Authors: Xiong, Jie, Fan, Xing, Long, Dajiang, Zhu, Bofeng, Zhang, Xiao, Lu, Junyong, Xie, Yunchuan, Zhang, Zhicheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3
cites cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3
container_end_page 24619
container_issue 46
container_start_page 24611
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 10
creator Xiong, Jie
Fan, Xing
Long, Dajiang
Zhu, Bofeng
Zhang, Xiao
Lu, Junyong
Xie, Yunchuan
Zhang, Zhicheng
description Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density ( U e ) of the modified BOPP films is 10.10 J cm −3 with a charge–discharge efficiency ( η ) > 90% at 30 °C, and it reaches 5.52 J cm −3 with an η of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.
doi_str_mv 10.1039/D2TA07214A
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740822029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740822029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</originalsourceid><addsrcrecordid>eNpFkMtqwzAQRU1poSHNpl8g6K7gVpJf0jKkTwh00XRtZGXkKNiWO5ID_o7-cB3Sx2zuZTgzw9woumb0jtFE3j_wzZIWnKXLs2jGaUbjIpX5-Z8X4jJaeL-nUwlKcyln0de7rTtrrFZdILbt0R2ghaPvyM7WuzhA2wOqMCAQ6ADrkfjgUNVApr5x2KpOA3GG9K4ZW0CytdCADmi1JweriHadDzjoYLuaKOIHNGqa-MW1QrSTBlQ9adQIeBVdGNV4WPzoPPp4etysXuL12_PrarmONc9kiBWFBHTGmTRCAAUGWco127JtAYlhAFpBnqRC6lwkQkhRVUlBZTbBSlS6SubRzWnv9PXnAD6UezdgN50seZFSwTnlcqJuT5RG5z2CKXu0rcKxZLQ85l7-5558AzPteVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740822029</pqid></control><display><type>article</type><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><source>Royal Society of Chemistry Journals</source><creator>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</creator><creatorcontrib>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</creatorcontrib><description>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density ( U e ) of the modified BOPP films is 10.10 J cm −3 with a charge–discharge efficiency ( η ) &gt; 90% at 30 °C, and it reaches 5.52 J cm −3 with an η of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA07214A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Addition polymerization ; Capacitors ; Carrier traps ; Charge efficiency ; Chemical vapor deposition ; Dielectrics ; Discharge ; Electric fields ; Energy levels ; Energy storage ; Heat resistance ; High temperature ; Leakage current ; Low temperature ; Polymer films ; Polymers ; Polypropylene ; Temperature</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</citedby><cites>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</cites><orcidid>0000-0003-0202-384X ; 0000-0003-1871-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Long, Dajiang</creatorcontrib><creatorcontrib>Zhu, Bofeng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Lu, Junyong</creatorcontrib><creatorcontrib>Xie, Yunchuan</creatorcontrib><creatorcontrib>Zhang, Zhicheng</creatorcontrib><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density ( U e ) of the modified BOPP films is 10.10 J cm −3 with a charge–discharge efficiency ( η ) &gt; 90% at 30 °C, and it reaches 5.52 J cm −3 with an η of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</description><subject>Addition polymerization</subject><subject>Capacitors</subject><subject>Carrier traps</subject><subject>Charge efficiency</subject><subject>Chemical vapor deposition</subject><subject>Dielectrics</subject><subject>Discharge</subject><subject>Electric fields</subject><subject>Energy levels</subject><subject>Energy storage</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Leakage current</subject><subject>Low temperature</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Temperature</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtqwzAQRU1poSHNpl8g6K7gVpJf0jKkTwh00XRtZGXkKNiWO5ID_o7-cB3Sx2zuZTgzw9woumb0jtFE3j_wzZIWnKXLs2jGaUbjIpX5-Z8X4jJaeL-nUwlKcyln0de7rTtrrFZdILbt0R2ghaPvyM7WuzhA2wOqMCAQ6ADrkfjgUNVApr5x2KpOA3GG9K4ZW0CytdCADmi1JweriHadDzjoYLuaKOIHNGqa-MW1QrSTBlQ9adQIeBVdGNV4WPzoPPp4etysXuL12_PrarmONc9kiBWFBHTGmTRCAAUGWco127JtAYlhAFpBnqRC6lwkQkhRVUlBZTbBSlS6SubRzWnv9PXnAD6UezdgN50seZFSwTnlcqJuT5RG5z2CKXu0rcKxZLQ85l7-5558AzPteVQ</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Xiong, Jie</creator><creator>Fan, Xing</creator><creator>Long, Dajiang</creator><creator>Zhu, Bofeng</creator><creator>Zhang, Xiao</creator><creator>Lu, Junyong</creator><creator>Xie, Yunchuan</creator><creator>Zhang, Zhicheng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0202-384X</orcidid><orcidid>https://orcid.org/0000-0003-1871-117X</orcidid></search><sort><creationdate>20221129</creationdate><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><author>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Capacitors</topic><topic>Carrier traps</topic><topic>Charge efficiency</topic><topic>Chemical vapor deposition</topic><topic>Dielectrics</topic><topic>Discharge</topic><topic>Electric fields</topic><topic>Energy levels</topic><topic>Energy storage</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Leakage current</topic><topic>Low temperature</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Long, Dajiang</creatorcontrib><creatorcontrib>Zhu, Bofeng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Lu, Junyong</creatorcontrib><creatorcontrib>Xie, Yunchuan</creatorcontrib><creatorcontrib>Zhang, Zhicheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jie</au><au>Fan, Xing</au><au>Long, Dajiang</au><au>Zhu, Bofeng</au><au>Zhang, Xiao</au><au>Lu, Junyong</au><au>Xie, Yunchuan</au><au>Zhang, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-29</date><risdate>2022</risdate><volume>10</volume><issue>46</issue><spage>24611</spage><epage>24619</epage><pages>24611-24619</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density ( U e ) of the modified BOPP films is 10.10 J cm −3 with a charge–discharge efficiency ( η ) &gt; 90% at 30 °C, and it reaches 5.52 J cm −3 with an η of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA07214A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0202-384X</orcidid><orcidid>https://orcid.org/0000-0003-1871-117X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2740822029
source Royal Society of Chemistry Journals
subjects Addition polymerization
Capacitors
Carrier traps
Charge efficiency
Chemical vapor deposition
Dielectrics
Discharge
Electric fields
Energy levels
Energy storage
Heat resistance
High temperature
Leakage current
Low temperature
Polymer films
Polymers
Polypropylene
Temperature
title Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significant%20improvement%20in%20high-temperature%20energy%20storage%20performance%20of%20polymer%20dielectrics%20via%20constructing%20a%20surface%20polymer%20carrier%20trap%20layer&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiong,%20Jie&rft.date=2022-11-29&rft.volume=10&rft.issue=46&rft.spage=24611&rft.epage=24619&rft.pages=24611-24619&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA07214A&rft_dat=%3Cproquest_cross%3E2740822029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740822029&rft_id=info:pmid/&rfr_iscdi=true