Loading…
Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer
Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of el...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3 |
container_end_page | 24619 |
container_issue | 46 |
container_start_page | 24611 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 10 |
creator | Xiong, Jie Fan, Xing Long, Dajiang Zhu, Bofeng Zhang, Xiao Lu, Junyong Xie, Yunchuan Zhang, Zhicheng |
description | Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density (
U
e
) of the modified BOPP films is 10.10 J cm
−3
with a charge–discharge efficiency (
η
) > 90% at 30 °C, and it reaches 5.52 J cm
−3
with an
η
of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition. |
doi_str_mv | 10.1039/D2TA07214A |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2740822029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2740822029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</originalsourceid><addsrcrecordid>eNpFkMtqwzAQRU1poSHNpl8g6K7gVpJf0jKkTwh00XRtZGXkKNiWO5ID_o7-cB3Sx2zuZTgzw9woumb0jtFE3j_wzZIWnKXLs2jGaUbjIpX5-Z8X4jJaeL-nUwlKcyln0de7rTtrrFZdILbt0R2ghaPvyM7WuzhA2wOqMCAQ6ADrkfjgUNVApr5x2KpOA3GG9K4ZW0CytdCADmi1JweriHadDzjoYLuaKOIHNGqa-MW1QrSTBlQ9adQIeBVdGNV4WPzoPPp4etysXuL12_PrarmONc9kiBWFBHTGmTRCAAUGWco127JtAYlhAFpBnqRC6lwkQkhRVUlBZTbBSlS6SubRzWnv9PXnAD6UezdgN50seZFSwTnlcqJuT5RG5z2CKXu0rcKxZLQ85l7-5558AzPteVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2740822029</pqid></control><display><type>article</type><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><source>Royal Society of Chemistry Journals</source><creator>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</creator><creatorcontrib>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</creatorcontrib><description>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density (
U
e
) of the modified BOPP films is 10.10 J cm
−3
with a charge–discharge efficiency (
η
) > 90% at 30 °C, and it reaches 5.52 J cm
−3
with an
η
of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D2TA07214A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Addition polymerization ; Capacitors ; Carrier traps ; Charge efficiency ; Chemical vapor deposition ; Dielectrics ; Discharge ; Electric fields ; Energy levels ; Energy storage ; Heat resistance ; High temperature ; Leakage current ; Low temperature ; Polymer films ; Polymers ; Polypropylene ; Temperature</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</citedby><cites>FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</cites><orcidid>0000-0003-0202-384X ; 0000-0003-1871-117X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Long, Dajiang</creatorcontrib><creatorcontrib>Zhu, Bofeng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Lu, Junyong</creatorcontrib><creatorcontrib>Xie, Yunchuan</creatorcontrib><creatorcontrib>Zhang, Zhicheng</creatorcontrib><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density (
U
e
) of the modified BOPP films is 10.10 J cm
−3
with a charge–discharge efficiency (
η
) > 90% at 30 °C, and it reaches 5.52 J cm
−3
with an
η
of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</description><subject>Addition polymerization</subject><subject>Capacitors</subject><subject>Carrier traps</subject><subject>Charge efficiency</subject><subject>Chemical vapor deposition</subject><subject>Dielectrics</subject><subject>Discharge</subject><subject>Electric fields</subject><subject>Energy levels</subject><subject>Energy storage</subject><subject>Heat resistance</subject><subject>High temperature</subject><subject>Leakage current</subject><subject>Low temperature</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Temperature</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkMtqwzAQRU1poSHNpl8g6K7gVpJf0jKkTwh00XRtZGXkKNiWO5ID_o7-cB3Sx2zuZTgzw9woumb0jtFE3j_wzZIWnKXLs2jGaUbjIpX5-Z8X4jJaeL-nUwlKcyln0de7rTtrrFZdILbt0R2ghaPvyM7WuzhA2wOqMCAQ6ADrkfjgUNVApr5x2KpOA3GG9K4ZW0CytdCADmi1JweriHadDzjoYLuaKOIHNGqa-MW1QrSTBlQ9adQIeBVdGNV4WPzoPPp4etysXuL12_PrarmONc9kiBWFBHTGmTRCAAUGWco127JtAYlhAFpBnqRC6lwkQkhRVUlBZTbBSlS6SubRzWnv9PXnAD6UezdgN50seZFSwTnlcqJuT5RG5z2CKXu0rcKxZLQ85l7-5558AzPteVQ</recordid><startdate>20221129</startdate><enddate>20221129</enddate><creator>Xiong, Jie</creator><creator>Fan, Xing</creator><creator>Long, Dajiang</creator><creator>Zhu, Bofeng</creator><creator>Zhang, Xiao</creator><creator>Lu, Junyong</creator><creator>Xie, Yunchuan</creator><creator>Zhang, Zhicheng</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0202-384X</orcidid><orcidid>https://orcid.org/0000-0003-1871-117X</orcidid></search><sort><creationdate>20221129</creationdate><title>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</title><author>Xiong, Jie ; Fan, Xing ; Long, Dajiang ; Zhu, Bofeng ; Zhang, Xiao ; Lu, Junyong ; Xie, Yunchuan ; Zhang, Zhicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Addition polymerization</topic><topic>Capacitors</topic><topic>Carrier traps</topic><topic>Charge efficiency</topic><topic>Chemical vapor deposition</topic><topic>Dielectrics</topic><topic>Discharge</topic><topic>Electric fields</topic><topic>Energy levels</topic><topic>Energy storage</topic><topic>Heat resistance</topic><topic>High temperature</topic><topic>Leakage current</topic><topic>Low temperature</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jie</creatorcontrib><creatorcontrib>Fan, Xing</creatorcontrib><creatorcontrib>Long, Dajiang</creatorcontrib><creatorcontrib>Zhu, Bofeng</creatorcontrib><creatorcontrib>Zhang, Xiao</creatorcontrib><creatorcontrib>Lu, Junyong</creatorcontrib><creatorcontrib>Xie, Yunchuan</creatorcontrib><creatorcontrib>Zhang, Zhicheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jie</au><au>Fan, Xing</au><au>Long, Dajiang</au><au>Zhu, Bofeng</au><au>Zhang, Xiao</au><au>Lu, Junyong</au><au>Xie, Yunchuan</au><au>Zhang, Zhicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2022-11-29</date><risdate>2022</risdate><volume>10</volume><issue>46</issue><spage>24611</spage><epage>24619</epage><pages>24611-24619</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Polymer dielectrics are preferred materials for high-energy-storage metalized film capacitors. However, the state-of-the-art commercial capacitor dielectrics represented by biaxially oriented polypropylene (BOPP) can hardly fulfill the practical requirements of the harsh operating environments of electronics and electrical-power equipment. In this work, a facile, high-efficiency strategy is proposed for fabricating polymeric films with excellent high-temperature capacitive performance. This strategy involves coating the surface of BOPP films with parylene polymers by chemical vapor deposition. The addition of a parylene polymer layer with deep trap energy levels and high melting temperatures significantly improves the temperature resistance of BOPP and effectively suppresses leakage current, resulting in excellent capacitive properties at elevated temperatures and high electric fields. The maximum discharged energy density (
U
e
) of the modified BOPP films is 10.10 J cm
−3
with a charge–discharge efficiency (
η
) > 90% at 30 °C, and it reaches 5.52 J cm
−3
with an
η
of over 90% at 120 °C. This method offers unprecedented opportunities for the development of scalable polymer dielectrics with high energy storage and low loss at high temperatures due to its non-damaging nature, precise thickness control, low temperature, and readily scaled-up conformal deposition.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D2TA07214A</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0202-384X</orcidid><orcidid>https://orcid.org/0000-0003-1871-117X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2022-11, Vol.10 (46), p.24611-24619 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2740822029 |
source | Royal Society of Chemistry Journals |
subjects | Addition polymerization Capacitors Carrier traps Charge efficiency Chemical vapor deposition Dielectrics Discharge Electric fields Energy levels Energy storage Heat resistance High temperature Leakage current Low temperature Polymer films Polymers Polypropylene Temperature |
title | Significant improvement in high-temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Significant%20improvement%20in%20high-temperature%20energy%20storage%20performance%20of%20polymer%20dielectrics%20via%20constructing%20a%20surface%20polymer%20carrier%20trap%20layer&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiong,%20Jie&rft.date=2022-11-29&rft.volume=10&rft.issue=46&rft.spage=24611&rft.epage=24619&rft.pages=24611-24619&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D2TA07214A&rft_dat=%3Cproquest_cross%3E2740822029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c259t-a0e3ec5219f88e0e1e542c1d1d7e3f1eecae63489c6838898bb3709588ea8bcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2740822029&rft_id=info:pmid/&rfr_iscdi=true |