Loading…

Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect

Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2022-11, Vol.37 (22), p.3931-3941
Main Authors: Venkatesan, N., Shanmugharaj, A. M., Reddy, M. J. K., Won, K. H., Ryu, S. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253
cites cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253
container_end_page 3941
container_issue 22
container_start_page 3931
container_title Journal of materials research
container_volume 37
creator Venkatesan, N.
Shanmugharaj, A. M.
Reddy, M. J. K.
Won, K. H.
Ryu, S. H.
description Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO 2 was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO 2 /NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg −1 over 500 cycles measured @100 mAg −1 ). Graphical abstract
doi_str_mv 10.1557/s43578-022-00810-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741010331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741010331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOja_08xSin9QLFhdh5nMjZ0yndRkBrErfQbf0CcxtQV3ri7ncs653A-hc0YvmVLjUZRCjTWhnBNKNaNkc4AGnEpJlODZIRpQrSXhOZPH6CTGJaVM0bEcoM95v4ZQ-4ChAdsFbxewqm3R4LR2PqyK1kLE3uF5O__--Jq3Mz56eLyd4QV0EHzsQm-7PkAkZRGhwk3dLep-hYvWV4DfksLQLrYt1f5EbbGroUnSuaRP0ZErmghn-zlEzzfXT5M7Mp3d3k-upsQKlneEac4z5XiZgZJcCgeVYqwUTljGKgeOyjyvCsEk11QLRfNcQ1a6imuQmisxRBe73nXwrz3Ezix9H9p00vCxZJRRIVhy8Z3Lpt9iAGfWoV4V4d0waraozQ61SajNL2qzSSGxC8Vkbl8g_FX_k_oBcXOEjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741010331</pqid></control><display><type>article</type><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><source>Springer Nature</source><creator>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</creator><creatorcontrib>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</creatorcontrib><description>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO 2 was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO 2 /NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg −1 over 500 cycles measured @100 mAg −1 ). Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00810-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anodes ; Applied and Technical Physics ; Biomaterials ; Charge transfer ; Chemical synthesis ; Chemistry and Materials Science ; Composite materials ; Controllability ; Electric fields ; Electrochemical analysis ; Electrode materials ; Energy storage ; Graphene ; Heterostructures ; Inorganic Chemistry ; Invited Paper ; Kinetics ; Lithium-ion batteries ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Optoelectronics ; Rechargeable batteries ; Tin dioxide</subject><ispartof>Journal of materials research, 2022-11, Vol.37 (22), p.3931-3941</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</citedby><cites>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</cites><orcidid>0000-0003-0095-6857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Venkatesan, N.</creatorcontrib><creatorcontrib>Shanmugharaj, A. M.</creatorcontrib><creatorcontrib>Reddy, M. J. K.</creatorcontrib><creatorcontrib>Won, K. H.</creatorcontrib><creatorcontrib>Ryu, S. H.</creatorcontrib><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO 2 was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO 2 /NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg −1 over 500 cycles measured @100 mAg −1 ). Graphical abstract</description><subject>Anodes</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Kinetics</subject><subject>Lithium-ion batteries</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Rechargeable batteries</subject><subject>Tin dioxide</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOja_08xSin9QLFhdh5nMjZ0yndRkBrErfQbf0CcxtQV3ri7ncs653A-hc0YvmVLjUZRCjTWhnBNKNaNkc4AGnEpJlODZIRpQrSXhOZPH6CTGJaVM0bEcoM95v4ZQ-4ChAdsFbxewqm3R4LR2PqyK1kLE3uF5O__--Jq3Mz56eLyd4QV0EHzsQm-7PkAkZRGhwk3dLep-hYvWV4DfksLQLrYt1f5EbbGroUnSuaRP0ZErmghn-zlEzzfXT5M7Mp3d3k-upsQKlneEac4z5XiZgZJcCgeVYqwUTljGKgeOyjyvCsEk11QLRfNcQ1a6imuQmisxRBe73nXwrz3Ezix9H9p00vCxZJRRIVhy8Z3Lpt9iAGfWoV4V4d0waraozQ61SajNL2qzSSGxC8Vkbl8g_FX_k_oBcXOEjQ</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Venkatesan, N.</creator><creator>Shanmugharaj, A. M.</creator><creator>Reddy, M. J. K.</creator><creator>Won, K. H.</creator><creator>Ryu, S. H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0095-6857</orcidid></search><sort><creationdate>20221128</creationdate><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><author>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Kinetics</topic><topic>Lithium-ion batteries</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Rechargeable batteries</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatesan, N.</creatorcontrib><creatorcontrib>Shanmugharaj, A. M.</creatorcontrib><creatorcontrib>Reddy, M. J. K.</creatorcontrib><creatorcontrib>Won, K. H.</creatorcontrib><creatorcontrib>Ryu, S. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesan, N.</au><au>Shanmugharaj, A. M.</au><au>Reddy, M. J. K.</au><au>Won, K. H.</au><au>Ryu, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-11-28</date><risdate>2022</risdate><volume>37</volume><issue>22</issue><spage>3931</spage><epage>3941</epage><pages>3931-3941</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO 2 was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO 2 /NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg −1 over 500 cycles measured @100 mAg −1 ). Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00810-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0095-6857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2022-11, Vol.37 (22), p.3931-3941
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_2741010331
source Springer Nature
subjects Anodes
Applied and Technical Physics
Biomaterials
Charge transfer
Chemical synthesis
Chemistry and Materials Science
Composite materials
Controllability
Electric fields
Electrochemical analysis
Electrode materials
Energy storage
Graphene
Heterostructures
Inorganic Chemistry
Invited Paper
Kinetics
Lithium-ion batteries
Materials Engineering
Materials research
Materials Science
Nanotechnology
Optoelectronics
Rechargeable batteries
Tin dioxide
title Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20electrochemical%20performances%20of%20SnS%E2%80%93SnO2/NRGO%20heterostructures-based%20lithium%20anode%20with%20enhanced%20electric%20field%20effect&rft.jtitle=Journal%20of%20materials%20research&rft.au=Venkatesan,%20N.&rft.date=2022-11-28&rft.volume=37&rft.issue=22&rft.spage=3931&rft.epage=3941&rft.pages=3931-3941&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00810-z&rft_dat=%3Cproquest_cross%3E2741010331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2741010331&rft_id=info:pmid/&rfr_iscdi=true