Loading…
Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect
Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefi...
Saved in:
Published in: | Journal of materials research 2022-11, Vol.37 (22), p.3931-3941 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253 |
container_end_page | 3941 |
container_issue | 22 |
container_start_page | 3931 |
container_title | Journal of materials research |
container_volume | 37 |
creator | Venkatesan, N. Shanmugharaj, A. M. Reddy, M. J. K. Won, K. H. Ryu, S. H. |
description | Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO
2
was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO
2
/NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg
−1
over 500 cycles measured @100 mAg
−1
).
Graphical abstract |
doi_str_mv | 10.1557/s43578-022-00810-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2741010331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741010331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOja_08xSin9QLFhdh5nMjZ0yndRkBrErfQbf0CcxtQV3ri7ncs653A-hc0YvmVLjUZRCjTWhnBNKNaNkc4AGnEpJlODZIRpQrSXhOZPH6CTGJaVM0bEcoM95v4ZQ-4ChAdsFbxewqm3R4LR2PqyK1kLE3uF5O__--Jq3Mz56eLyd4QV0EHzsQm-7PkAkZRGhwk3dLep-hYvWV4DfksLQLrYt1f5EbbGroUnSuaRP0ZErmghn-zlEzzfXT5M7Mp3d3k-upsQKlneEac4z5XiZgZJcCgeVYqwUTljGKgeOyjyvCsEk11QLRfNcQ1a6imuQmisxRBe73nXwrz3Ezix9H9p00vCxZJRRIVhy8Z3Lpt9iAGfWoV4V4d0waraozQ61SajNL2qzSSGxC8Vkbl8g_FX_k_oBcXOEjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741010331</pqid></control><display><type>article</type><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><source>Springer Nature</source><creator>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</creator><creatorcontrib>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</creatorcontrib><description>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO
2
was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO
2
/NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg
−1
over 500 cycles measured @100 mAg
−1
).
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-022-00810-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anodes ; Applied and Technical Physics ; Biomaterials ; Charge transfer ; Chemical synthesis ; Chemistry and Materials Science ; Composite materials ; Controllability ; Electric fields ; Electrochemical analysis ; Electrode materials ; Energy storage ; Graphene ; Heterostructures ; Inorganic Chemistry ; Invited Paper ; Kinetics ; Lithium-ion batteries ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Optoelectronics ; Rechargeable batteries ; Tin dioxide</subject><ispartof>Journal of materials research, 2022-11, Vol.37 (22), p.3931-3941</ispartof><rights>The Author(s), under exclusive licence to The Materials Research Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</citedby><cites>FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</cites><orcidid>0000-0003-0095-6857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Venkatesan, N.</creatorcontrib><creatorcontrib>Shanmugharaj, A. M.</creatorcontrib><creatorcontrib>Reddy, M. J. K.</creatorcontrib><creatorcontrib>Won, K. H.</creatorcontrib><creatorcontrib>Ryu, S. H.</creatorcontrib><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO
2
was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO
2
/NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg
−1
over 500 cycles measured @100 mAg
−1
).
Graphical abstract</description><subject>Anodes</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Charge transfer</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Inorganic Chemistry</subject><subject>Invited Paper</subject><subject>Kinetics</subject><subject>Lithium-ion batteries</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Rechargeable batteries</subject><subject>Tin dioxide</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOja_08xSin9QLFhdh5nMjZ0yndRkBrErfQbf0CcxtQV3ri7ncs653A-hc0YvmVLjUZRCjTWhnBNKNaNkc4AGnEpJlODZIRpQrSXhOZPH6CTGJaVM0bEcoM95v4ZQ-4ChAdsFbxewqm3R4LR2PqyK1kLE3uF5O__--Jq3Mz56eLyd4QV0EHzsQm-7PkAkZRGhwk3dLep-hYvWV4DfksLQLrYt1f5EbbGroUnSuaRP0ZErmghn-zlEzzfXT5M7Mp3d3k-upsQKlneEac4z5XiZgZJcCgeVYqwUTljGKgeOyjyvCsEk11QLRfNcQ1a6imuQmisxRBe73nXwrz3Ezix9H9p00vCxZJRRIVhy8Z3Lpt9iAGfWoV4V4d0waraozQ61SajNL2qzSSGxC8Vkbl8g_FX_k_oBcXOEjQ</recordid><startdate>20221128</startdate><enddate>20221128</enddate><creator>Venkatesan, N.</creator><creator>Shanmugharaj, A. M.</creator><creator>Reddy, M. J. K.</creator><creator>Won, K. H.</creator><creator>Ryu, S. H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-0095-6857</orcidid></search><sort><creationdate>20221128</creationdate><title>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</title><author>Venkatesan, N. ; Shanmugharaj, A. M. ; Reddy, M. J. K. ; Won, K. H. ; Ryu, S. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Charge transfer</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Inorganic Chemistry</topic><topic>Invited Paper</topic><topic>Kinetics</topic><topic>Lithium-ion batteries</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Rechargeable batteries</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatesan, N.</creatorcontrib><creatorcontrib>Shanmugharaj, A. M.</creatorcontrib><creatorcontrib>Reddy, M. J. K.</creatorcontrib><creatorcontrib>Won, K. H.</creatorcontrib><creatorcontrib>Ryu, S. H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatesan, N.</au><au>Shanmugharaj, A. M.</au><au>Reddy, M. J. K.</au><au>Won, K. H.</au><au>Ryu, S. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2022-11-28</date><risdate>2022</risdate><volume>37</volume><issue>22</issue><spage>3931</spage><epage>3941</epage><pages>3931-3941</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Inducing built-in charge transfer driving forces by constructing heteronanostructures resulted in the fascinating materials for next generation high speed electronics, optoelectronics and energy storage applications. Controllable syntheses of heteronanostructures with built-in charge transfer benefitted the specific charge transfer kinetics, thereby enhancing the electrochemical performances, when evaluated as an anode material for lithium-ion batteries (LIBs). In the present study, novel conversion type heteronanostructures consisting of p-type SnS and n-type SnO
2
was successfully fabricated using graphene oxide templates, which ultimately caused the construction of SnS–SnO
2
/NRGO composites. The formation of the indigenous electric field in resultant composites facilitated the charge transfer kinetics, thereby boosted electrochemical properties. When used as an electrode material in lithium-ion batteries (LIBs), synthesized composite materials deliver extraordinary specific capacity, long-term electrochemical cycling characteristics and outstanding rate capacity (1120 mAhg
−1
over 500 cycles measured @100 mAg
−1
).
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-022-00810-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0095-6857</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2022-11, Vol.37 (22), p.3931-3941 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2741010331 |
source | Springer Nature |
subjects | Anodes Applied and Technical Physics Biomaterials Charge transfer Chemical synthesis Chemistry and Materials Science Composite materials Controllability Electric fields Electrochemical analysis Electrode materials Energy storage Graphene Heterostructures Inorganic Chemistry Invited Paper Kinetics Lithium-ion batteries Materials Engineering Materials research Materials Science Nanotechnology Optoelectronics Rechargeable batteries Tin dioxide |
title | Superior electrochemical performances of SnS–SnO2/NRGO heterostructures-based lithium anode with enhanced electric field effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20electrochemical%20performances%20of%20SnS%E2%80%93SnO2/NRGO%20heterostructures-based%20lithium%20anode%20with%20enhanced%20electric%20field%20effect&rft.jtitle=Journal%20of%20materials%20research&rft.au=Venkatesan,%20N.&rft.date=2022-11-28&rft.volume=37&rft.issue=22&rft.spage=3931&rft.epage=3941&rft.pages=3931-3941&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-022-00810-z&rft_dat=%3Cproquest_cross%3E2741010331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-182265f2b6e54243fed511b3f3c11dfef0499da3142808350998e6bfd28e48253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2741010331&rft_id=info:pmid/&rfr_iscdi=true |