Loading…

SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation

Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowled...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Luo, Huaishao, Bao, Junwei, Wu, Youzheng, He, Xiaodong, Li, Tianrui
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Luo, Huaishao
Bao, Junwei
Wu, Youzheng
He, Xiaodong
Li, Tianrui
description Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2741130498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2741130498</sourcerecordid><originalsourceid>FETCH-proquest_journals_27411304983</originalsourceid><addsrcrecordid>eNqNjEELgjAYQEcQJOV_GHQWdNO0biFFgVBgdOkgUz6nMjfbJtG_T6If0Om9w-PNkEMoDbwkJGSBXGM63_fJJiZRRB30yIGn2fm6w1dmqwbvOdfAmW2VxK_WNjgDpiUrBeAUpAVtcK00vgwgvbuqWDkKpt84h55J21aT8H7qvoMVmtdMGHB_XKL18XBLT96g1XMEY4tOjdNcmILEYRBQP9wm9L_qAwDjQn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741130498</pqid></control><display><type>article</type><title>SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Luo, Huaishao ; Bao, Junwei ; Wu, Youzheng ; He, Xiaodong ; Li, Tianrui</creator><creatorcontrib>Luo, Huaishao ; Bao, Junwei ; Wu, Youzheng ; He, Xiaodong ; Li, Tianrui</creatorcontrib><description>Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Image annotation ; Image segmentation ; Semantic segmentation ; Semantics ; Training</subject><ispartof>arXiv.org, 2023-06</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2741130498?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Luo, Huaishao</creatorcontrib><creatorcontrib>Bao, Junwei</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Li, Tianrui</creatorcontrib><title>SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation</title><title>arXiv.org</title><description>Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.</description><subject>Image annotation</subject><subject>Image segmentation</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEELgjAYQEcQJOV_GHQWdNO0biFFgVBgdOkgUz6nMjfbJtG_T6If0Om9w-PNkEMoDbwkJGSBXGM63_fJJiZRRB30yIGn2fm6w1dmqwbvOdfAmW2VxK_WNjgDpiUrBeAUpAVtcK00vgwgvbuqWDkKpt84h55J21aT8H7qvoMVmtdMGHB_XKL18XBLT96g1XMEY4tOjdNcmILEYRBQP9wm9L_qAwDjQn0</recordid><startdate>20230620</startdate><enddate>20230620</enddate><creator>Luo, Huaishao</creator><creator>Bao, Junwei</creator><creator>Wu, Youzheng</creator><creator>He, Xiaodong</creator><creator>Li, Tianrui</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230620</creationdate><title>SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation</title><author>Luo, Huaishao ; Bao, Junwei ; Wu, Youzheng ; He, Xiaodong ; Li, Tianrui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27411304983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Image annotation</topic><topic>Image segmentation</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Huaishao</creatorcontrib><creatorcontrib>Bao, Junwei</creatorcontrib><creatorcontrib>Wu, Youzheng</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Li, Tianrui</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Huaishao</au><au>Bao, Junwei</au><au>Wu, Youzheng</au><au>He, Xiaodong</au><au>Li, Tianrui</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2023-06-20</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Recently, the contrastive language-image pre-training, e.g., CLIP, has demonstrated promising results on various downstream tasks. The pre-trained model can capture enriched visual concepts for images by learning from a large scale of text-image data. However, transferring the learned visual knowledge to open-vocabulary semantic segmentation is still under-explored. In this paper, we propose a CLIP-based model named SegCLIP for the topic of open-vocabulary segmentation in an annotation-free manner. The SegCLIP achieves segmentation based on ViT and the main idea is to gather patches with learnable centers to semantic regions through training on text-image pairs. The gathering operation can dynamically capture the semantic groups, which can be used to generate the final segmentation results. We further propose a reconstruction loss on masked patches and a superpixel-based KL loss with pseudo-labels to enhance the visual representation. Experimental results show that our model achieves comparable or superior segmentation accuracy on the PASCAL VOC 2012 (+0.3% mIoU), PASCAL Context (+2.3% mIoU), and COCO (+2.2% mIoU) compared with baselines. We release the code at https://github.com/ArrowLuo/SegCLIP.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2741130498
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Image annotation
Image segmentation
Semantic segmentation
Semantics
Training
title SegCLIP: Patch Aggregation with Learnable Centers for Open-Vocabulary Semantic Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SegCLIP:%20Patch%20Aggregation%20with%20Learnable%20Centers%20for%20Open-Vocabulary%20Semantic%20Segmentation&rft.jtitle=arXiv.org&rft.au=Luo,%20Huaishao&rft.date=2023-06-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2741130498%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27411304983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2741130498&rft_id=info:pmid/&rfr_iscdi=true