Loading…

spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver

In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite-element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the...

Full description

Saved in:
Bibliographic Details
Published in:Geoscientific Model Development 2022-11, Vol.15 (23), p.8639-8667
Main Authors: Roberts, Keith J, Olender, Alexandre, Franceschini, Lucas, Kirby, Robert C, Gioria, Rafael S, Carmo, Bruno S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3
cites cdi_FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3
container_end_page 8667
container_issue 23
container_start_page 8639
container_title Geoscientific Model Development
container_volume 15
creator Roberts, Keith J
Olender, Alexandre
Franceschini, Lucas
Kirby, Robert C
Gioria, Rafael S
Carmo, Bruno S
description In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite-element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite-element method. The capability of the software is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering realistic geophysics examples. A time domain FWI approach that uses meshes composed of variably sized triangular elements to discretize the domain is detailed. To resolve both the forward and adjoint-state equations and to calculate a mesh-independent gradient associated with the FWI process, a fully explicit, variable higher-order (up to degree k=5 in 2D and k=3 in 3D) mass-lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and properties of the wave field (e.g., local P-wave speed) and by leveraging higher-order basis functions, the number of degrees of freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material properties.
doi_str_mv 10.5194/gmd-15-8639-2022
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2741261332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728373514</galeid><doaj_id>oai_doaj_org_article_d56ed992f525435f90d03a1eea3a3e16</doaj_id><sourcerecordid>A728373514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3</originalsourceid><addsrcrecordid>eNptks9rFTEQxxexYG29e1zw5CE1v3fjrRSrDwpC1ZOHMCaTJc_dzTPZ19r_3qxP1Aclh4SZz3zIwLdpXjJ6oZiRb4bJE6ZIr4UhnHL-pDllxjBiNBVP_3s_a56XsqVUm053p83XsnvI6W0L7XXM6DN8R_INCvr2Hu6w3eW0gwGWmOYWZt-G_TiStRNSnkic7zCXtRfiHBckOOKE89KWNNbOeXMSYCz44s991ny5fvf56gO5-fh-c3V5Q5zs6UJ07zvPqOBIQTnlALSSFCjrjHGi77mk2nmpHJVcO1Q09N57RwUI9F6jOGs2B69PsLW7HCfIDzZBtL8LKQ8W8hLdiNYrjd4YHhRXUqhgqK8ehgirjenqenVw1c1_7LEsdpv2ea7ft7yTjGsmBP9HDVClcQ5pyeCmWJy97HgvOqGYrNTFI1Q9Hqfo0owh1vrRwOujgcos-HMZYF-K3Xy6PWbpgXU5lZIx_F2cUbsmwtZEWKbsmgi7JkL8AuMvp6E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2741261332</pqid></control><display><type>article</type><title>spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver</title><source>Publicly Available Content Database</source><creator>Roberts, Keith J ; Olender, Alexandre ; Franceschini, Lucas ; Kirby, Robert C ; Gioria, Rafael S ; Carmo, Bruno S</creator><creatorcontrib>Roberts, Keith J ; Olender, Alexandre ; Franceschini, Lucas ; Kirby, Robert C ; Gioria, Rafael S ; Carmo, Bruno S</creatorcontrib><description>In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite-element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite-element method. The capability of the software is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering realistic geophysics examples. A time domain FWI approach that uses meshes composed of variably sized triangular elements to discretize the domain is detailed. To resolve both the forward and adjoint-state equations and to calculate a mesh-independent gradient associated with the FWI process, a fully explicit, variable higher-order (up to degree k=5 in 2D and k=3 in 3D) mass-lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and properties of the wave field (e.g., local P-wave speed) and by leveraging higher-order basis functions, the number of degrees of freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material properties.</description><identifier>ISSN: 1991-9603</identifier><identifier>ISSN: 1991-959X</identifier><identifier>ISSN: 1991-962X</identifier><identifier>EISSN: 1991-9603</identifier><identifier>EISSN: 1991-962X</identifier><identifier>DOI: 10.5194/gmd-15-8639-2022</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Basis functions ; Differential equations ; Equations of state ; Finite element method ; Geophysics ; Inverse problems ; Lumping ; Material properties ; Mathematical analysis ; Mathematical models ; Methods ; P waves ; Partial differential equations ; Propagation ; Seismic response ; Seismic velocities ; Seismic waves ; Software ; Velocity ; Wave propagation ; Waveforms</subject><ispartof>Geoscientific Model Development, 2022-11, Vol.15 (23), p.8639-8667</ispartof><rights>COPYRIGHT 2022 Copernicus GmbH</rights><rights>2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3</citedby><cites>FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3</cites><orcidid>0000-0003-3856-0911 ; 0000-0001-8715-5125</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2741261332/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2741261332?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Roberts, Keith J</creatorcontrib><creatorcontrib>Olender, Alexandre</creatorcontrib><creatorcontrib>Franceschini, Lucas</creatorcontrib><creatorcontrib>Kirby, Robert C</creatorcontrib><creatorcontrib>Gioria, Rafael S</creatorcontrib><creatorcontrib>Carmo, Bruno S</creatorcontrib><title>spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver</title><title>Geoscientific Model Development</title><description>In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite-element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite-element method. The capability of the software is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering realistic geophysics examples. A time domain FWI approach that uses meshes composed of variably sized triangular elements to discretize the domain is detailed. To resolve both the forward and adjoint-state equations and to calculate a mesh-independent gradient associated with the FWI process, a fully explicit, variable higher-order (up to degree k=5 in 2D and k=3 in 3D) mass-lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and properties of the wave field (e.g., local P-wave speed) and by leveraging higher-order basis functions, the number of degrees of freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material properties.</description><subject>Basis functions</subject><subject>Differential equations</subject><subject>Equations of state</subject><subject>Finite element method</subject><subject>Geophysics</subject><subject>Inverse problems</subject><subject>Lumping</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>P waves</subject><subject>Partial differential equations</subject><subject>Propagation</subject><subject>Seismic response</subject><subject>Seismic velocities</subject><subject>Seismic waves</subject><subject>Software</subject><subject>Velocity</subject><subject>Wave propagation</subject><subject>Waveforms</subject><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><issn>1991-9603</issn><issn>1991-962X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks9rFTEQxxexYG29e1zw5CE1v3fjrRSrDwpC1ZOHMCaTJc_dzTPZ19r_3qxP1Aclh4SZz3zIwLdpXjJ6oZiRb4bJE6ZIr4UhnHL-pDllxjBiNBVP_3s_a56XsqVUm053p83XsnvI6W0L7XXM6DN8R_INCvr2Hu6w3eW0gwGWmOYWZt-G_TiStRNSnkic7zCXtRfiHBckOOKE89KWNNbOeXMSYCz44s991ny5fvf56gO5-fh-c3V5Q5zs6UJ07zvPqOBIQTnlALSSFCjrjHGi77mk2nmpHJVcO1Q09N57RwUI9F6jOGs2B69PsLW7HCfIDzZBtL8LKQ8W8hLdiNYrjd4YHhRXUqhgqK8ehgirjenqenVw1c1_7LEsdpv2ea7ft7yTjGsmBP9HDVClcQ5pyeCmWJy97HgvOqGYrNTFI1Q9Hqfo0owh1vrRwOujgcos-HMZYF-K3Xy6PWbpgXU5lZIx_F2cUbsmwtZEWKbsmgi7JkL8AuMvp6E</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Roberts, Keith J</creator><creator>Olender, Alexandre</creator><creator>Franceschini, Lucas</creator><creator>Kirby, Robert C</creator><creator>Gioria, Rafael S</creator><creator>Carmo, Bruno S</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3856-0911</orcidid><orcidid>https://orcid.org/0000-0001-8715-5125</orcidid></search><sort><creationdate>20221130</creationdate><title>spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver</title><author>Roberts, Keith J ; Olender, Alexandre ; Franceschini, Lucas ; Kirby, Robert C ; Gioria, Rafael S ; Carmo, Bruno S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Differential equations</topic><topic>Equations of state</topic><topic>Finite element method</topic><topic>Geophysics</topic><topic>Inverse problems</topic><topic>Lumping</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>P waves</topic><topic>Partial differential equations</topic><topic>Propagation</topic><topic>Seismic response</topic><topic>Seismic velocities</topic><topic>Seismic waves</topic><topic>Software</topic><topic>Velocity</topic><topic>Wave propagation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Keith J</creatorcontrib><creatorcontrib>Olender, Alexandre</creatorcontrib><creatorcontrib>Franceschini, Lucas</creatorcontrib><creatorcontrib>Kirby, Robert C</creatorcontrib><creatorcontrib>Gioria, Rafael S</creatorcontrib><creatorcontrib>Carmo, Bruno S</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geoscientific Model Development</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Keith J</au><au>Olender, Alexandre</au><au>Franceschini, Lucas</au><au>Kirby, Robert C</au><au>Gioria, Rafael S</au><au>Carmo, Bruno S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver</atitle><jtitle>Geoscientific Model Development</jtitle><date>2022-11-30</date><risdate>2022</risdate><volume>15</volume><issue>23</issue><spage>8639</spage><epage>8667</epage><pages>8639-8667</pages><issn>1991-9603</issn><issn>1991-959X</issn><issn>1991-962X</issn><eissn>1991-9603</eissn><eissn>1991-962X</eissn><abstract>In this article, we introduce spyro, a software stack to solve wave propagation in heterogeneous domains and perform full waveform inversion (FWI) employing the finite-element framework from Firedrake, a high-level Python package for the automated solution of partial differential equations using the finite-element method. The capability of the software is demonstrated by using a continuous Galerkin approach to perform FWI for seismic velocity model building, considering realistic geophysics examples. A time domain FWI approach that uses meshes composed of variably sized triangular elements to discretize the domain is detailed. To resolve both the forward and adjoint-state equations and to calculate a mesh-independent gradient associated with the FWI process, a fully explicit, variable higher-order (up to degree k=5 in 2D and k=3 in 3D) mass-lumping method is used. We show that, by adapting the triangular elements to the expected peak source frequency and properties of the wave field (e.g., local P-wave speed) and by leveraging higher-order basis functions, the number of degrees of freedom necessary to discretize the domain can be reduced. Results from wave simulations and FWIs in both 2D and 3D highlight our developments and demonstrate the benefits and challenges with using triangular meshes adapted to the material properties.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/gmd-15-8639-2022</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0003-3856-0911</orcidid><orcidid>https://orcid.org/0000-0001-8715-5125</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1991-9603
ispartof Geoscientific Model Development, 2022-11, Vol.15 (23), p.8639-8667
issn 1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
language eng
recordid cdi_proquest_journals_2741261332
source Publicly Available Content Database
subjects Basis functions
Differential equations
Equations of state
Finite element method
Geophysics
Inverse problems
Lumping
Material properties
Mathematical analysis
Mathematical models
Methods
P waves
Partial differential equations
Propagation
Seismic response
Seismic velocities
Seismic waves
Software
Velocity
Wave propagation
Waveforms
title spyro: a Firedrake-based wave propagation and full-waveform-inversion finite-element solver
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A46%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=spyro:%20a%20Firedrake-based%20wave%20propagation%20and%20full-waveform-inversion%20finite-element%20solver&rft.jtitle=Geoscientific%20Model%20Development&rft.au=Roberts,%20Keith%20J&rft.date=2022-11-30&rft.volume=15&rft.issue=23&rft.spage=8639&rft.epage=8667&rft.pages=8639-8667&rft.issn=1991-9603&rft.eissn=1991-9603&rft_id=info:doi/10.5194/gmd-15-8639-2022&rft_dat=%3Cgale_doaj_%3EA728373514%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-68d7d1032e0a5c5caa6540a01799c3882406cd45c0426ce50f8dddc03a3edd6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2741261332&rft_id=info:pmid/&rft_galeid=A728373514&rfr_iscdi=true