Loading…
Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide
In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hyd...
Saved in:
Published in: | IEEE journal of photovoltaics 2022-11, Vol.12 (6), p.1377-1385 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3 |
container_end_page | 1385 |
container_issue | 6 |
container_start_page | 1377 |
container_title | IEEE journal of photovoltaics |
container_volume | 12 |
creator | Phung, Nga van Helvoirt, Cristian Beyer, Wolfhard Anker, John Naber, Ronald C. G. Renes, Marten Kessels, Wilhelmus M. M. Geerligs, L. J. Creatore, Mariadriana Macco, Bart |
description | In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides. |
doi_str_mv | 10.1109/JPHOTOV.2022.3206895 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742703201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905475</ieee_id><sourcerecordid>2742703201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGE4nyC_TQxPNiP7bd3SNBFA1xSUSPNqU7JUXYYluI--9dAjqXmUzeZyZ5kuSW4AEhuLx_mU2qefUxoJjSAaNYFCU_S3qUcJGyDLPzv5kV5DLph7DCXQnMhch6yefYGNDR7gFN2tq7JTQqWtcgZ9DMrdv0zaKZCsHuu3WzRCPXRKVjQIsWDaPbWJ1OVQs-fYCtCzZCjV6t_oI1qn5sDdfJhVHrAP1Tv0reH8fz0SSdVk_Po-E01SzjMRWgc24AKGM4p2JRs4yRhaIlo4piyAWjpISi0DkYWmMwinJCmKIEq2LBFLtK7o53t9597yBEuXI733QvJc0zmuNODOlS2TGlvQvBg5FbbzfKt5JgeZApTzLlQaY8yeywmyNmAeAfKUvMs5yzX1ZzcIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703201</pqid></control><display><type>article</type><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</creator><creatorcontrib>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</creatorcontrib><description>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2022.3206895</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum oxide ; Annealing ; Atomic layer epitaxy ; Elastic analysis ; Hydrogen ; Hydrogenation ; Indium oxides ; Metal oxides ; Metals ; nickel oxide ; Nickel oxides ; Open circuit voltage ; passivating contact ; Passivation ; Photovoltaic cells ; Polysilicon ; Secondary ion mass spectrometry ; Silicon ; Silicon dioxide ; silicon solar cells ; Solar cells ; Stacks ; Surface measurement ; surface passivation ; Surface texture ; Zinc oxide</subject><ispartof>IEEE journal of photovoltaics, 2022-11, Vol.12 (6), p.1377-1385</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</citedby><cites>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</cites><orcidid>0000-0001-7802-4748 ; 0000-0003-1197-441X ; 0000-0002-0328-6791 ; 0000-0002-7630-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905475$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Phung, Nga</creatorcontrib><creatorcontrib>van Helvoirt, Cristian</creatorcontrib><creatorcontrib>Beyer, Wolfhard</creatorcontrib><creatorcontrib>Anker, John</creatorcontrib><creatorcontrib>Naber, Ronald C. G.</creatorcontrib><creatorcontrib>Renes, Marten</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</description><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>Atomic layer epitaxy</subject><subject>Elastic analysis</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Indium oxides</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>nickel oxide</subject><subject>Nickel oxides</subject><subject>Open circuit voltage</subject><subject>passivating contact</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Polysilicon</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Stacks</subject><subject>Surface measurement</subject><subject>surface passivation</subject><subject>Surface texture</subject><subject>Zinc oxide</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PAjEQhjdGE4nyC_TQxPNiP7bd3SNBFA1xSUSPNqU7JUXYYluI--9dAjqXmUzeZyZ5kuSW4AEhuLx_mU2qefUxoJjSAaNYFCU_S3qUcJGyDLPzv5kV5DLph7DCXQnMhch6yefYGNDR7gFN2tq7JTQqWtcgZ9DMrdv0zaKZCsHuu3WzRCPXRKVjQIsWDaPbWJ1OVQs-fYCtCzZCjV6t_oI1qn5sDdfJhVHrAP1Tv0reH8fz0SSdVk_Po-E01SzjMRWgc24AKGM4p2JRs4yRhaIlo4piyAWjpISi0DkYWmMwinJCmKIEq2LBFLtK7o53t9597yBEuXI733QvJc0zmuNODOlS2TGlvQvBg5FbbzfKt5JgeZApTzLlQaY8yeywmyNmAeAfKUvMs5yzX1ZzcIQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Phung, Nga</creator><creator>van Helvoirt, Cristian</creator><creator>Beyer, Wolfhard</creator><creator>Anker, John</creator><creator>Naber, Ronald C. G.</creator><creator>Renes, Marten</creator><creator>Kessels, Wilhelmus M. M.</creator><creator>Geerligs, L. J.</creator><creator>Creatore, Mariadriana</creator><creator>Macco, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7802-4748</orcidid><orcidid>https://orcid.org/0000-0003-1197-441X</orcidid><orcidid>https://orcid.org/0000-0002-0328-6791</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid></search><sort><creationdate>20221101</creationdate><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><author>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>Atomic layer epitaxy</topic><topic>Elastic analysis</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Indium oxides</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>nickel oxide</topic><topic>Nickel oxides</topic><topic>Open circuit voltage</topic><topic>passivating contact</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Polysilicon</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Stacks</topic><topic>Surface measurement</topic><topic>surface passivation</topic><topic>Surface texture</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung, Nga</creatorcontrib><creatorcontrib>van Helvoirt, Cristian</creatorcontrib><creatorcontrib>Beyer, Wolfhard</creatorcontrib><creatorcontrib>Anker, John</creatorcontrib><creatorcontrib>Naber, Ronald C. G.</creatorcontrib><creatorcontrib>Renes, Marten</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung, Nga</au><au>van Helvoirt, Cristian</au><au>Beyer, Wolfhard</au><au>Anker, John</au><au>Naber, Ronald C. G.</au><au>Renes, Marten</au><au>Kessels, Wilhelmus M. M.</au><au>Geerligs, L. J.</au><au>Creatore, Mariadriana</au><au>Macco, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>1377</spage><epage>1385</epage><pages>1377-1385</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2022.3206895</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7802-4748</orcidid><orcidid>https://orcid.org/0000-0003-1197-441X</orcidid><orcidid>https://orcid.org/0000-0002-0328-6791</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2022-11, Vol.12 (6), p.1377-1385 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_proquest_journals_2742703201 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Aluminum oxide Annealing Atomic layer epitaxy Elastic analysis Hydrogen Hydrogenation Indium oxides Metal oxides Metals nickel oxide Nickel oxides Open circuit voltage passivating contact Passivation Photovoltaic cells Polysilicon Secondary ion mass spectrometry Silicon Silicon dioxide silicon solar cells Solar cells Stacks Surface measurement surface passivation Surface texture Zinc oxide |
title | Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Hydrogenation%20of%20Poly-Si%20Passivating%20Contacts%20by%20Atomic-Layer-Deposited%20Nickel%20Oxide&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Phung,%20Nga&rft.date=2022-11-01&rft.volume=12&rft.issue=6&rft.spage=1377&rft.epage=1385&rft.pages=1377-1385&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2022.3206895&rft_dat=%3Cproquest_cross%3E2742703201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742703201&rft_id=info:pmid/&rft_ieee_id=9905475&rfr_iscdi=true |