Loading…

Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide

In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hyd...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2022-11, Vol.12 (6), p.1377-1385
Main Authors: Phung, Nga, van Helvoirt, Cristian, Beyer, Wolfhard, Anker, John, Naber, Ronald C. G., Renes, Marten, Kessels, Wilhelmus M. M., Geerligs, L. J., Creatore, Mariadriana, Macco, Bart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3
cites cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3
container_end_page 1385
container_issue 6
container_start_page 1377
container_title IEEE journal of photovoltaics
container_volume 12
creator Phung, Nga
van Helvoirt, Cristian
Beyer, Wolfhard
Anker, John
Naber, Ronald C. G.
Renes, Marten
Kessels, Wilhelmus M. M.
Geerligs, L. J.
Creatore, Mariadriana
Macco, Bart
description In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.
doi_str_mv 10.1109/JPHOTOV.2022.3206895
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742703201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9905475</ieee_id><sourcerecordid>2742703201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhjdGE4nyC_TQxPNiP7bd3SNBFA1xSUSPNqU7JUXYYluI--9dAjqXmUzeZyZ5kuSW4AEhuLx_mU2qefUxoJjSAaNYFCU_S3qUcJGyDLPzv5kV5DLph7DCXQnMhch6yefYGNDR7gFN2tq7JTQqWtcgZ9DMrdv0zaKZCsHuu3WzRCPXRKVjQIsWDaPbWJ1OVQs-fYCtCzZCjV6t_oI1qn5sDdfJhVHrAP1Tv0reH8fz0SSdVk_Po-E01SzjMRWgc24AKGM4p2JRs4yRhaIlo4piyAWjpISi0DkYWmMwinJCmKIEq2LBFLtK7o53t9597yBEuXI733QvJc0zmuNODOlS2TGlvQvBg5FbbzfKt5JgeZApTzLlQaY8yeywmyNmAeAfKUvMs5yzX1ZzcIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742703201</pqid></control><display><type>article</type><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</creator><creatorcontrib>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</creatorcontrib><description>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2022.3206895</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Aluminum oxide ; Annealing ; Atomic layer epitaxy ; Elastic analysis ; Hydrogen ; Hydrogenation ; Indium oxides ; Metal oxides ; Metals ; nickel oxide ; Nickel oxides ; Open circuit voltage ; passivating contact ; Passivation ; Photovoltaic cells ; Polysilicon ; Secondary ion mass spectrometry ; Silicon ; Silicon dioxide ; silicon solar cells ; Solar cells ; Stacks ; Surface measurement ; surface passivation ; Surface texture ; Zinc oxide</subject><ispartof>IEEE journal of photovoltaics, 2022-11, Vol.12 (6), p.1377-1385</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</citedby><cites>FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</cites><orcidid>0000-0001-7802-4748 ; 0000-0003-1197-441X ; 0000-0002-0328-6791 ; 0000-0002-7630-8226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9905475$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Phung, Nga</creatorcontrib><creatorcontrib>van Helvoirt, Cristian</creatorcontrib><creatorcontrib>Beyer, Wolfhard</creatorcontrib><creatorcontrib>Anker, John</creatorcontrib><creatorcontrib>Naber, Ronald C. G.</creatorcontrib><creatorcontrib>Renes, Marten</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</description><subject>Aluminum oxide</subject><subject>Annealing</subject><subject>Atomic layer epitaxy</subject><subject>Elastic analysis</subject><subject>Hydrogen</subject><subject>Hydrogenation</subject><subject>Indium oxides</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>nickel oxide</subject><subject>Nickel oxides</subject><subject>Open circuit voltage</subject><subject>passivating contact</subject><subject>Passivation</subject><subject>Photovoltaic cells</subject><subject>Polysilicon</subject><subject>Secondary ion mass spectrometry</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>silicon solar cells</subject><subject>Solar cells</subject><subject>Stacks</subject><subject>Surface measurement</subject><subject>surface passivation</subject><subject>Surface texture</subject><subject>Zinc oxide</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kE1PAjEQhjdGE4nyC_TQxPNiP7bd3SNBFA1xSUSPNqU7JUXYYluI--9dAjqXmUzeZyZ5kuSW4AEhuLx_mU2qefUxoJjSAaNYFCU_S3qUcJGyDLPzv5kV5DLph7DCXQnMhch6yefYGNDR7gFN2tq7JTQqWtcgZ9DMrdv0zaKZCsHuu3WzRCPXRKVjQIsWDaPbWJ1OVQs-fYCtCzZCjV6t_oI1qn5sDdfJhVHrAP1Tv0reH8fz0SSdVk_Po-E01SzjMRWgc24AKGM4p2JRs4yRhaIlo4piyAWjpISi0DkYWmMwinJCmKIEq2LBFLtK7o53t9597yBEuXI733QvJc0zmuNODOlS2TGlvQvBg5FbbzfKt5JgeZApTzLlQaY8yeywmyNmAeAfKUvMs5yzX1ZzcIQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Phung, Nga</creator><creator>van Helvoirt, Cristian</creator><creator>Beyer, Wolfhard</creator><creator>Anker, John</creator><creator>Naber, Ronald C. G.</creator><creator>Renes, Marten</creator><creator>Kessels, Wilhelmus M. M.</creator><creator>Geerligs, L. J.</creator><creator>Creatore, Mariadriana</creator><creator>Macco, Bart</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7802-4748</orcidid><orcidid>https://orcid.org/0000-0003-1197-441X</orcidid><orcidid>https://orcid.org/0000-0002-0328-6791</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid></search><sort><creationdate>20221101</creationdate><title>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</title><author>Phung, Nga ; van Helvoirt, Cristian ; Beyer, Wolfhard ; Anker, John ; Naber, Ronald C. G. ; Renes, Marten ; Kessels, Wilhelmus M. M. ; Geerligs, L. J. ; Creatore, Mariadriana ; Macco, Bart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum oxide</topic><topic>Annealing</topic><topic>Atomic layer epitaxy</topic><topic>Elastic analysis</topic><topic>Hydrogen</topic><topic>Hydrogenation</topic><topic>Indium oxides</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>nickel oxide</topic><topic>Nickel oxides</topic><topic>Open circuit voltage</topic><topic>passivating contact</topic><topic>Passivation</topic><topic>Photovoltaic cells</topic><topic>Polysilicon</topic><topic>Secondary ion mass spectrometry</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>silicon solar cells</topic><topic>Solar cells</topic><topic>Stacks</topic><topic>Surface measurement</topic><topic>surface passivation</topic><topic>Surface texture</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung, Nga</creatorcontrib><creatorcontrib>van Helvoirt, Cristian</creatorcontrib><creatorcontrib>Beyer, Wolfhard</creatorcontrib><creatorcontrib>Anker, John</creatorcontrib><creatorcontrib>Naber, Ronald C. G.</creatorcontrib><creatorcontrib>Renes, Marten</creatorcontrib><creatorcontrib>Kessels, Wilhelmus M. M.</creatorcontrib><creatorcontrib>Geerligs, L. J.</creatorcontrib><creatorcontrib>Creatore, Mariadriana</creatorcontrib><creatorcontrib>Macco, Bart</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung, Nga</au><au>van Helvoirt, Cristian</au><au>Beyer, Wolfhard</au><au>Anker, John</au><au>Naber, Ronald C. G.</au><au>Renes, Marten</au><au>Kessels, Wilhelmus M. M.</au><au>Geerligs, L. J.</au><au>Creatore, Mariadriana</au><au>Macco, Bart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>1377</spage><epage>1385</epage><pages>1377-1385</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>In recent years, passivating contacts based on SiO 2 /poly-Si have proven to be an enabling technology for Si solar cells. Effective hydrogenation of the interfacial SiO 2 is vital for realizing efficient contacts. Hydrogen-rich dielectrics, such as SiN x and Al 2 O 3 , are commonly employed for hydrogenation, whereas also recently, n -type conductive oxides, such as In 2 O 3 :Sn and ZnO, have been demonstrated to yield excellent hydrogenation. This study presents the use of a p -type metal oxide, specifically NiO, as a suitable hydrogenation source. The p -type character of NiO makes it an interesting candidate for hydrogenation because of its potential use in selective contacting structures. Herein, we show that NiO, synthesized by atomic layer deposition (ALD), can be used to hydrogenate poly-Si/SiO 2 contacts effectively. Furthermore, we benchmark its hydrogenation performance to the established ALD ZnO/Al 2 O 3 stack and provide insights into the hydrogenation process. On planar surfaces, NiO yields almost as excellent results as ZnO/Al 2 O 3 stacks, whereas it lags behind on more challenging textured surfaces. Interestingly, even though elastic recoil detection analysis reveals that ALD NiO is rich in hydrogen, secondary ion mass spectrometry measurements show that, when NiO is compared to the ZnO/Al 2 O 3 stack, less hydrogen is present at the Si/SiO 2 interface after annealing. This is explained from effusion measurements, which show substantial effusion of hydrogen from NiO around 300 °C. Hence, Al 2 O 3 capping is further employed to prevent hydrogen loss and on textured wafers, the NiO/Al 2 O 3 stacks on poly-Si achieve an implied open-circuit voltage of 728 mV, confirming the excellent hydrogenation from ALD metal oxides.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2022.3206895</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7802-4748</orcidid><orcidid>https://orcid.org/0000-0003-1197-441X</orcidid><orcidid>https://orcid.org/0000-0002-0328-6791</orcidid><orcidid>https://orcid.org/0000-0002-7630-8226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2022-11, Vol.12 (6), p.1377-1385
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_2742703201
source IEEE Electronic Library (IEL) Journals
subjects Aluminum oxide
Annealing
Atomic layer epitaxy
Elastic analysis
Hydrogen
Hydrogenation
Indium oxides
Metal oxides
Metals
nickel oxide
Nickel oxides
Open circuit voltage
passivating contact
Passivation
Photovoltaic cells
Polysilicon
Secondary ion mass spectrometry
Silicon
Silicon dioxide
silicon solar cells
Solar cells
Stacks
Surface measurement
surface passivation
Surface texture
Zinc oxide
title Effective Hydrogenation of Poly-Si Passivating Contacts by Atomic-Layer-Deposited Nickel Oxide
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Hydrogenation%20of%20Poly-Si%20Passivating%20Contacts%20by%20Atomic-Layer-Deposited%20Nickel%20Oxide&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Phung,%20Nga&rft.date=2022-11-01&rft.volume=12&rft.issue=6&rft.spage=1377&rft.epage=1385&rft.pages=1377-1385&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2022.3206895&rft_dat=%3Cproquest_cross%3E2742703201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-6ec75fee2330726bd3431ba2932a20e763219e88c7ef2d0efa25113a210a8b3a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742703201&rft_id=info:pmid/&rft_ieee_id=9905475&rfr_iscdi=true