Loading…
Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization
This article presents and experimentally evaluates a frequency error elimination technique suitable for unsynchronized bistatic Multiple-Input Multiple-Output (MIMO) radar for human-body detection. First, a mathematical expression of human-body localization using bistatic MIMO radar is presented. Th...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2022-10, Vol.16 (5), p.882-890 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43 |
container_end_page | 890 |
container_issue | 5 |
container_start_page | 882 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 16 |
creator | Abuduaini, Abudusaimi Shiraki, Nobuyuki Honma, Naoki Nakayama, Takeshi Iizuka, Shoichi |
description | This article presents and experimentally evaluates a frequency error elimination technique suitable for unsynchronized bistatic Multiple-Input Multiple-Output (MIMO) radar for human-body detection. First, a mathematical expression of human-body localization using bistatic MIMO radar is presented. Then the direct path is used to eliminate the phase error created by the frequency difference between the transmitter and receiver. A new Doppler-shifted component of the MIMO channel without phase error is derived, and the locations of the multiple targets are calculated by the 2-dimensional MUltiple SIgnal Classification (MUSIC) method. Next, the results of simulations that examine frequency error versus power ratios are discussed to illustrate the effectiveness of the proposed method. An experiment is carried out in an indoor multipath-rich environment. To emulate the unsynchronized condition, the transmitter and receiver use independent Signal Generators (SGs). One to six targets are tested. The experiments demonstrate that our unsynchronized radar system can identify the locations of multiple targets with high accuracy. |
doi_str_mv | 10.1109/TBCAS.2022.3205362 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742704276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9882316</ieee_id><sourcerecordid>2742704276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43</originalsourceid><addsrcrecordid>eNpdkUlPwzAQhS0EYv8DcLHEhUuKtzjxkUZlkVohsYhj5NgTEUjtYieH8utxKeLAYTQjzfeeZvQQOqNkQilRV8_T6vppwghjE85IziXbQYdUCZIppcjuZuYsE7nID9BRjO-E5JIpto8OuCQlV7k8RB83AT5HcGaNZyH4gCu_XIGLeui8w77FLy6unXkL3nVfYPG0i0PaGVy9Znhxv3jAj9rqgNskXYz90K16wHfjUrts6u0az73Rfff1Y3eC9lrdRzj97cfo5Wb2XN1l84fb--p6nhlesCErJLd52dACpM0Nb7lVqhFCF6rksjAtsQ230MiWaVBM8gIaS00jodFATCP4Mbrc-q6CT7_FoV520UDfawd-jDUrKCuFkGWZ0It_6Lsfg0vXJUqwgqSSiWJbygQfY4C2XoVuqcO6pqTeRFH_RFFvoqh_o0ii862oA4A_gSpLxqnk3xMcg_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742704276</pqid></control><display><type>article</type><title>Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization</title><source>IEEE Xplore (Online service)</source><creator>Abuduaini, Abudusaimi ; Shiraki, Nobuyuki ; Honma, Naoki ; Nakayama, Takeshi ; Iizuka, Shoichi</creator><creatorcontrib>Abuduaini, Abudusaimi ; Shiraki, Nobuyuki ; Honma, Naoki ; Nakayama, Takeshi ; Iizuka, Shoichi</creatorcontrib><description>This article presents and experimentally evaluates a frequency error elimination technique suitable for unsynchronized bistatic Multiple-Input Multiple-Output (MIMO) radar for human-body detection. First, a mathematical expression of human-body localization using bistatic MIMO radar is presented. Then the direct path is used to eliminate the phase error created by the frequency difference between the transmitter and receiver. A new Doppler-shifted component of the MIMO channel without phase error is derived, and the locations of the multiple targets are calculated by the 2-dimensional MUltiple SIgnal Classification (MUSIC) method. Next, the results of simulations that examine frequency error versus power ratios are discussed to illustrate the effectiveness of the proposed method. An experiment is carried out in an indoor multipath-rich environment. To emulate the unsynchronized condition, the transmitter and receiver use independent Signal Generators (SGs). One to six targets are tested. The experiments demonstrate that our unsynchronized radar system can identify the locations of multiple targets with high accuracy.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2022.3205362</identifier><identifier>PMID: 36083956</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Direction-of-arrival estimation ; Error compensation ; frequency error ; Indoor environments ; living-body localization ; Localization ; Location awareness ; MIMO communication ; MIMO radar ; multiple targets ; Multistatic radar ; Oscillators ; Phase error ; Radar ; Radar detection ; Radar equipment ; Receivers ; Signal classification ; Signal generators ; unsynchronized</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2022-10, Vol.16 (5), p.882-890</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43</citedby><cites>FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43</cites><orcidid>0000-0002-1036-2094 ; 0000-0003-4738-3187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9882316$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Abuduaini, Abudusaimi</creatorcontrib><creatorcontrib>Shiraki, Nobuyuki</creatorcontrib><creatorcontrib>Honma, Naoki</creatorcontrib><creatorcontrib>Nakayama, Takeshi</creatorcontrib><creatorcontrib>Iizuka, Shoichi</creatorcontrib><title>Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><description>This article presents and experimentally evaluates a frequency error elimination technique suitable for unsynchronized bistatic Multiple-Input Multiple-Output (MIMO) radar for human-body detection. First, a mathematical expression of human-body localization using bistatic MIMO radar is presented. Then the direct path is used to eliminate the phase error created by the frequency difference between the transmitter and receiver. A new Doppler-shifted component of the MIMO channel without phase error is derived, and the locations of the multiple targets are calculated by the 2-dimensional MUltiple SIgnal Classification (MUSIC) method. Next, the results of simulations that examine frequency error versus power ratios are discussed to illustrate the effectiveness of the proposed method. An experiment is carried out in an indoor multipath-rich environment. To emulate the unsynchronized condition, the transmitter and receiver use independent Signal Generators (SGs). One to six targets are tested. The experiments demonstrate that our unsynchronized radar system can identify the locations of multiple targets with high accuracy.</description><subject>Direction-of-arrival estimation</subject><subject>Error compensation</subject><subject>frequency error</subject><subject>Indoor environments</subject><subject>living-body localization</subject><subject>Localization</subject><subject>Location awareness</subject><subject>MIMO communication</subject><subject>MIMO radar</subject><subject>multiple targets</subject><subject>Multistatic radar</subject><subject>Oscillators</subject><subject>Phase error</subject><subject>Radar</subject><subject>Radar detection</subject><subject>Radar equipment</subject><subject>Receivers</subject><subject>Signal classification</subject><subject>Signal generators</subject><subject>unsynchronized</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUlPwzAQhS0EYv8DcLHEhUuKtzjxkUZlkVohsYhj5NgTEUjtYieH8utxKeLAYTQjzfeeZvQQOqNkQilRV8_T6vppwghjE85IziXbQYdUCZIppcjuZuYsE7nID9BRjO-E5JIpto8OuCQlV7k8RB83AT5HcGaNZyH4gCu_XIGLeui8w77FLy6unXkL3nVfYPG0i0PaGVy9Znhxv3jAj9rqgNskXYz90K16wHfjUrts6u0az73Rfff1Y3eC9lrdRzj97cfo5Wb2XN1l84fb--p6nhlesCErJLd52dACpM0Nb7lVqhFCF6rksjAtsQ230MiWaVBM8gIaS00jodFATCP4Mbrc-q6CT7_FoV520UDfawd-jDUrKCuFkGWZ0It_6Lsfg0vXJUqwgqSSiWJbygQfY4C2XoVuqcO6pqTeRFH_RFFvoqh_o0ii862oA4A_gSpLxqnk3xMcg_E</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Abuduaini, Abudusaimi</creator><creator>Shiraki, Nobuyuki</creator><creator>Honma, Naoki</creator><creator>Nakayama, Takeshi</creator><creator>Iizuka, Shoichi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1036-2094</orcidid><orcidid>https://orcid.org/0000-0003-4738-3187</orcidid></search><sort><creationdate>20221001</creationdate><title>Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization</title><author>Abuduaini, Abudusaimi ; Shiraki, Nobuyuki ; Honma, Naoki ; Nakayama, Takeshi ; Iizuka, Shoichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Direction-of-arrival estimation</topic><topic>Error compensation</topic><topic>frequency error</topic><topic>Indoor environments</topic><topic>living-body localization</topic><topic>Localization</topic><topic>Location awareness</topic><topic>MIMO communication</topic><topic>MIMO radar</topic><topic>multiple targets</topic><topic>Multistatic radar</topic><topic>Oscillators</topic><topic>Phase error</topic><topic>Radar</topic><topic>Radar detection</topic><topic>Radar equipment</topic><topic>Receivers</topic><topic>Signal classification</topic><topic>Signal generators</topic><topic>unsynchronized</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abuduaini, Abudusaimi</creatorcontrib><creatorcontrib>Shiraki, Nobuyuki</creatorcontrib><creatorcontrib>Honma, Naoki</creatorcontrib><creatorcontrib>Nakayama, Takeshi</creatorcontrib><creatorcontrib>Iizuka, Shoichi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abuduaini, Abudusaimi</au><au>Shiraki, Nobuyuki</au><au>Honma, Naoki</au><au>Nakayama, Takeshi</au><au>Iizuka, Shoichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>16</volume><issue>5</issue><spage>882</spage><epage>890</epage><pages>882-890</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>This article presents and experimentally evaluates a frequency error elimination technique suitable for unsynchronized bistatic Multiple-Input Multiple-Output (MIMO) radar for human-body detection. First, a mathematical expression of human-body localization using bistatic MIMO radar is presented. Then the direct path is used to eliminate the phase error created by the frequency difference between the transmitter and receiver. A new Doppler-shifted component of the MIMO channel without phase error is derived, and the locations of the multiple targets are calculated by the 2-dimensional MUltiple SIgnal Classification (MUSIC) method. Next, the results of simulations that examine frequency error versus power ratios are discussed to illustrate the effectiveness of the proposed method. An experiment is carried out in an indoor multipath-rich environment. To emulate the unsynchronized condition, the transmitter and receiver use independent Signal Generators (SGs). One to six targets are tested. The experiments demonstrate that our unsynchronized radar system can identify the locations of multiple targets with high accuracy.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>36083956</pmid><doi>10.1109/TBCAS.2022.3205362</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1036-2094</orcidid><orcidid>https://orcid.org/0000-0003-4738-3187</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2022-10, Vol.16 (5), p.882-890 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_journals_2742704276 |
source | IEEE Xplore (Online service) |
subjects | Direction-of-arrival estimation Error compensation frequency error Indoor environments living-body localization Localization Location awareness MIMO communication MIMO radar multiple targets Multistatic radar Oscillators Phase error Radar Radar detection Radar equipment Receivers Signal classification Signal generators unsynchronized |
title | Frequency Error Compensation of Unsynchronized Bistatic CW- MIMO Radar for Multiple Human-Body Localization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Error%20Compensation%20of%20Unsynchronized%20Bistatic%20CW-%20MIMO%20Radar%20for%20Multiple%20Human-Body%20Localization&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Abuduaini,%20Abudusaimi&rft.date=2022-10-01&rft.volume=16&rft.issue=5&rft.spage=882&rft.epage=890&rft.pages=882-890&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2022.3205362&rft_dat=%3Cproquest_cross%3E2742704276%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-763d58b17e6d5c3f3d99b44a798367cf0db3deb6f2ae92637ebd1cb6ebae0cb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742704276&rft_id=info:pmid/36083956&rft_ieee_id=9882316&rfr_iscdi=true |