Loading…
A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies
This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 μm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current w...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2022-10, Vol.16 (5), p.752-765 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 μm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method. |
---|---|
ISSN: | 1932-4545 1940-9990 |
DOI: | 10.1109/TBCAS.2022.3202026 |