Loading…
Even path decomposition of root square mean graphs
A decomposition Gi of G is called a linear decomposition or Arithmetic decomposition if each Gi is connected and |E(Gi)| = a+(i − 1)d, for all i = 1,2,3, …, n and a, d ∊ Z. The Arithmetic decomposition with a = 2 and d = 2 is known as Even Decomposition (ED) As the number of edges of sub graph of G...
Saved in:
Published in: | AIP conference proceedings 2022-11, Vol.2516 (1) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 2516 |
creator | Aswathy, H. Sandhya, S.S. |
description | A decomposition Gi of G is called a linear decomposition or Arithmetic decomposition if each Gi is connected and |E(Gi)| = a+(i − 1)d, for all i = 1,2,3, …, n and a, d ∊ Z. The Arithmetic decomposition with a = 2 and d = 2 is known as Even Decomposition (ED) As the number of edges of sub graph of G are even, we symbolize ED as (G2, G4, …,G2n). A decomposition (P2, P4, P6, …, P2n) of a graph G is an Even Path decomposition (EPD) if |E(P2i)| = 2i for all i = 1,2,3, …, n. Clearly q = n(n+1). This paper deals with Even Path Decomposition (EPD) of Root square mean graphs. Here we use graph labeling technique in Decomposition of Root square mean Graphs. |
doi_str_mv | 10.1063/5.0109068 |
format | article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2742740991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742740991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1338-49318d5c21f1799d28e93f81f3342d0af9fc0a483ce85abe44954c524b0a47883</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKsH_4OAN2HrTD52k6OU-gEFLwreQrqb2C12kya7Bf97t7TgTRh4MPzezOMRcoswQyj5g5wBgoZSnZEJSolFVWJ5TiYAWhRM8M9LcpXzBoDpqlITwhZ719Fo-zVtXB22MeS2b0NHg6cphJ7m3WCTo1tnO_qVbFzna3Lh7Xd2Nyedko-nxfv8pVi-Pb_OH5dFRM5VITRH1ciaocdK64Ypp7lX6DkXrAHrta_BCsVrp6RdOSG0FLVkYjVuK6X4lNwd78YUdoPLvdmEIXXjS8MqMQ5ojSN1f6Ry3fb2EN3E1G5t-jH7kIw0pz5MbPx_MII5FPhn4L-ZrmAs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742740991</pqid></control><display><type>article</type><title>Even path decomposition of root square mean graphs</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Aswathy, H. ; Sandhya, S.S.</creator><contributor>Vennila, B. ; Siva, E.P. ; KATIYAR, SAURABH KUMAR ; Pullepu, Babuji</contributor><creatorcontrib>Aswathy, H. ; Sandhya, S.S. ; Vennila, B. ; Siva, E.P. ; KATIYAR, SAURABH KUMAR ; Pullepu, Babuji</creatorcontrib><description>A decomposition Gi of G is called a linear decomposition or Arithmetic decomposition if each Gi is connected and |E(Gi)| = a+(i − 1)d, for all i = 1,2,3, …, n and a, d ∊ Z. The Arithmetic decomposition with a = 2 and d = 2 is known as Even Decomposition (ED) As the number of edges of sub graph of G are even, we symbolize ED as (G2, G4, …,G2n). A decomposition (P2, P4, P6, …, P2n) of a graph G is an Even Path decomposition (EPD) if |E(P2i)| = 2i for all i = 1,2,3, …, n. Clearly q = n(n+1). This paper deals with Even Path Decomposition (EPD) of Root square mean graphs. Here we use graph labeling technique in Decomposition of Root square mean Graphs.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0109068</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Arithmetic ; Decomposition ; Graph theory ; Graphs</subject><ispartof>AIP conference proceedings, 2022-11, Vol.2516 (1)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Vennila, B.</contributor><contributor>Siva, E.P.</contributor><contributor>KATIYAR, SAURABH KUMAR</contributor><contributor>Pullepu, Babuji</contributor><creatorcontrib>Aswathy, H.</creatorcontrib><creatorcontrib>Sandhya, S.S.</creatorcontrib><title>Even path decomposition of root square mean graphs</title><title>AIP conference proceedings</title><description>A decomposition Gi of G is called a linear decomposition or Arithmetic decomposition if each Gi is connected and |E(Gi)| = a+(i − 1)d, for all i = 1,2,3, …, n and a, d ∊ Z. The Arithmetic decomposition with a = 2 and d = 2 is known as Even Decomposition (ED) As the number of edges of sub graph of G are even, we symbolize ED as (G2, G4, …,G2n). A decomposition (P2, P4, P6, …, P2n) of a graph G is an Even Path decomposition (EPD) if |E(P2i)| = 2i for all i = 1,2,3, …, n. Clearly q = n(n+1). This paper deals with Even Path Decomposition (EPD) of Root square mean graphs. Here we use graph labeling technique in Decomposition of Root square mean Graphs.</description><subject>Arithmetic</subject><subject>Decomposition</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWKsH_4OAN2HrTD52k6OU-gEFLwreQrqb2C12kya7Bf97t7TgTRh4MPzezOMRcoswQyj5g5wBgoZSnZEJSolFVWJ5TiYAWhRM8M9LcpXzBoDpqlITwhZ719Fo-zVtXB22MeS2b0NHg6cphJ7m3WCTo1tnO_qVbFzna3Lh7Xd2Nyedko-nxfv8pVi-Pb_OH5dFRM5VITRH1ciaocdK64Ypp7lX6DkXrAHrta_BCsVrp6RdOSG0FLVkYjVuK6X4lNwd78YUdoPLvdmEIXXjS8MqMQ5ojSN1f6Ry3fb2EN3E1G5t-jH7kIw0pz5MbPx_MII5FPhn4L-ZrmAs</recordid><startdate>20221130</startdate><enddate>20221130</enddate><creator>Aswathy, H.</creator><creator>Sandhya, S.S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20221130</creationdate><title>Even path decomposition of root square mean graphs</title><author>Aswathy, H. ; Sandhya, S.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1338-49318d5c21f1799d28e93f81f3342d0af9fc0a483ce85abe44954c524b0a47883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arithmetic</topic><topic>Decomposition</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aswathy, H.</creatorcontrib><creatorcontrib>Sandhya, S.S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aswathy, H.</au><au>Sandhya, S.S.</au><au>Vennila, B.</au><au>Siva, E.P.</au><au>KATIYAR, SAURABH KUMAR</au><au>Pullepu, Babuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Even path decomposition of root square mean graphs</atitle><jtitle>AIP conference proceedings</jtitle><date>2022-11-30</date><risdate>2022</risdate><volume>2516</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A decomposition Gi of G is called a linear decomposition or Arithmetic decomposition if each Gi is connected and |E(Gi)| = a+(i − 1)d, for all i = 1,2,3, …, n and a, d ∊ Z. The Arithmetic decomposition with a = 2 and d = 2 is known as Even Decomposition (ED) As the number of edges of sub graph of G are even, we symbolize ED as (G2, G4, …,G2n). A decomposition (P2, P4, P6, …, P2n) of a graph G is an Even Path decomposition (EPD) if |E(P2i)| = 2i for all i = 1,2,3, …, n. Clearly q = n(n+1). This paper deals with Even Path Decomposition (EPD) of Root square mean graphs. Here we use graph labeling technique in Decomposition of Root square mean Graphs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0109068</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2022-11, Vol.2516 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2742740991 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Arithmetic Decomposition Graph theory Graphs |
title | Even path decomposition of root square mean graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Even%20path%20decomposition%20of%20root%20square%20mean%20graphs&rft.jtitle=AIP%20conference%20proceedings&rft.au=Aswathy,%20H.&rft.date=2022-11-30&rft.volume=2516&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0109068&rft_dat=%3Cproquest_scita%3E2742740991%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1338-49318d5c21f1799d28e93f81f3342d0af9fc0a483ce85abe44954c524b0a47883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742740991&rft_id=info:pmid/&rfr_iscdi=true |