Loading…

The Effectiveness of World Models for Continual Reinforcement Learning

World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally ex...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-07
Main Authors: Kessler, Samuel, Ostaszewski, Mateusz, Bortkiewicz, Michał, Żarski, Mateusz, Wołczyk, Maciej, Parker-Holder, Jack, Roberts, Stephen J, Miłoś, Piotr
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kessler, Samuel
Ostaszewski, Mateusz
Bortkiewicz, Michał
Żarski, Mateusz
Wołczyk, Maciej
Parker-Holder, Jack
Roberts, Stephen J
Miłoś, Piotr
description World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742867254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742867254</sourcerecordid><originalsourceid>FETCH-proquest_journals_27428672543</originalsourceid><addsrcrecordid>eNqNjcEKgkAURYcgSMp_eNBasBlN96K0qE0ILUP0TY1Mb2re2Pdn0Ae0unDOgbsQkVRql5SZlCsRM49pmsp9IfNcRaJp7wi11tgH80ZCZnAaLs7bAU5uQMugnYfKUTA0dRbOaGgmPT6QAhyx82TothFL3VnG-LdrsW3qtjokT-9eE3K4jm7yNKurLDJZfu8z9V_1Aa7PO0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742867254</pqid></control><display><type>article</type><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><source>Publicly Available Content Database</source><creator>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</creator><creatorcontrib>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</creatorcontrib><description>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Effectiveness ; Learning ; Teaching methods</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2742867254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Kessler, Samuel</creatorcontrib><creatorcontrib>Ostaszewski, Mateusz</creatorcontrib><creatorcontrib>Bortkiewicz, Michał</creatorcontrib><creatorcontrib>Żarski, Mateusz</creatorcontrib><creatorcontrib>Wołczyk, Maciej</creatorcontrib><creatorcontrib>Parker-Holder, Jack</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Miłoś, Piotr</creatorcontrib><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><title>arXiv.org</title><description>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</description><subject>Effectiveness</subject><subject>Learning</subject><subject>Teaching methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcEKgkAURYcgSMp_eNBasBlN96K0qE0ILUP0TY1Mb2re2Pdn0Ae0unDOgbsQkVRql5SZlCsRM49pmsp9IfNcRaJp7wi11tgH80ZCZnAaLs7bAU5uQMugnYfKUTA0dRbOaGgmPT6QAhyx82TothFL3VnG-LdrsW3qtjokT-9eE3K4jm7yNKurLDJZfu8z9V_1Aa7PO0o</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>Kessler, Samuel</creator><creator>Ostaszewski, Mateusz</creator><creator>Bortkiewicz, Michał</creator><creator>Żarski, Mateusz</creator><creator>Wołczyk, Maciej</creator><creator>Parker-Holder, Jack</creator><creator>Roberts, Stephen J</creator><creator>Miłoś, Piotr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230712</creationdate><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><author>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27428672543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effectiveness</topic><topic>Learning</topic><topic>Teaching methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Samuel</creatorcontrib><creatorcontrib>Ostaszewski, Mateusz</creatorcontrib><creatorcontrib>Bortkiewicz, Michał</creatorcontrib><creatorcontrib>Żarski, Mateusz</creatorcontrib><creatorcontrib>Wołczyk, Maciej</creatorcontrib><creatorcontrib>Parker-Holder, Jack</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Miłoś, Piotr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Samuel</au><au>Ostaszewski, Mateusz</au><au>Bortkiewicz, Michał</au><au>Żarski, Mateusz</au><au>Wołczyk, Maciej</au><au>Parker-Holder, Jack</au><au>Roberts, Stephen J</au><au>Miłoś, Piotr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Effectiveness of World Models for Continual Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-07-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2742867254
source Publicly Available Content Database
subjects Effectiveness
Learning
Teaching methods
title The Effectiveness of World Models for Continual Reinforcement Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Effectiveness%20of%20World%20Models%20for%20Continual%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Kessler,%20Samuel&rft.date=2023-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2742867254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27428672543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742867254&rft_id=info:pmid/&rfr_iscdi=true