Loading…
The Effectiveness of World Models for Continual Reinforcement Learning
World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally ex...
Saved in:
Published in: | arXiv.org 2023-07 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kessler, Samuel Ostaszewski, Mateusz Bortkiewicz, Michał Żarski, Mateusz Wołczyk, Maciej Parker-Holder, Jack Roberts, Stephen J Miłoś, Piotr |
description | World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742867254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742867254</sourcerecordid><originalsourceid>FETCH-proquest_journals_27428672543</originalsourceid><addsrcrecordid>eNqNjcEKgkAURYcgSMp_eNBasBlN96K0qE0ILUP0TY1Mb2re2Pdn0Ae0unDOgbsQkVRql5SZlCsRM49pmsp9IfNcRaJp7wi11tgH80ZCZnAaLs7bAU5uQMugnYfKUTA0dRbOaGgmPT6QAhyx82TothFL3VnG-LdrsW3qtjokT-9eE3K4jm7yNKurLDJZfu8z9V_1Aa7PO0o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742867254</pqid></control><display><type>article</type><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><source>Publicly Available Content Database</source><creator>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</creator><creatorcontrib>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</creatorcontrib><description>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Effectiveness ; Learning ; Teaching methods</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2742867254?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Kessler, Samuel</creatorcontrib><creatorcontrib>Ostaszewski, Mateusz</creatorcontrib><creatorcontrib>Bortkiewicz, Michał</creatorcontrib><creatorcontrib>Żarski, Mateusz</creatorcontrib><creatorcontrib>Wołczyk, Maciej</creatorcontrib><creatorcontrib>Parker-Holder, Jack</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Miłoś, Piotr</creatorcontrib><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><title>arXiv.org</title><description>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</description><subject>Effectiveness</subject><subject>Learning</subject><subject>Teaching methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcEKgkAURYcgSMp_eNBasBlN96K0qE0ILUP0TY1Mb2re2Pdn0Ae0unDOgbsQkVRql5SZlCsRM49pmsp9IfNcRaJp7wi11tgH80ZCZnAaLs7bAU5uQMugnYfKUTA0dRbOaGgmPT6QAhyx82TothFL3VnG-LdrsW3qtjokT-9eE3K4jm7yNKurLDJZfu8z9V_1Aa7PO0o</recordid><startdate>20230712</startdate><enddate>20230712</enddate><creator>Kessler, Samuel</creator><creator>Ostaszewski, Mateusz</creator><creator>Bortkiewicz, Michał</creator><creator>Żarski, Mateusz</creator><creator>Wołczyk, Maciej</creator><creator>Parker-Holder, Jack</creator><creator>Roberts, Stephen J</creator><creator>Miłoś, Piotr</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230712</creationdate><title>The Effectiveness of World Models for Continual Reinforcement Learning</title><author>Kessler, Samuel ; Ostaszewski, Mateusz ; Bortkiewicz, Michał ; Żarski, Mateusz ; Wołczyk, Maciej ; Parker-Holder, Jack ; Roberts, Stephen J ; Miłoś, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27428672543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Effectiveness</topic><topic>Learning</topic><topic>Teaching methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Kessler, Samuel</creatorcontrib><creatorcontrib>Ostaszewski, Mateusz</creatorcontrib><creatorcontrib>Bortkiewicz, Michał</creatorcontrib><creatorcontrib>Żarski, Mateusz</creatorcontrib><creatorcontrib>Wołczyk, Maciej</creatorcontrib><creatorcontrib>Parker-Holder, Jack</creatorcontrib><creatorcontrib>Roberts, Stephen J</creatorcontrib><creatorcontrib>Miłoś, Piotr</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kessler, Samuel</au><au>Ostaszewski, Mateusz</au><au>Bortkiewicz, Michał</au><au>Żarski, Mateusz</au><au>Wołczyk, Maciej</au><au>Parker-Holder, Jack</au><au>Roberts, Stephen J</au><au>Miłoś, Piotr</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The Effectiveness of World Models for Continual Reinforcement Learning</atitle><jtitle>arXiv.org</jtitle><date>2023-07-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>World models power some of the most efficient reinforcement learning algorithms. In this work, we showcase that they can be harnessed for continual learning - a situation when the agent faces changing environments. World models typically employ a replay buffer for training, which can be naturally extended to continual learning. We systematically study how different selective experience replay methods affect performance, forgetting, and transfer. We also provide recommendations regarding various modeling options for using world models. The best set of choices is called Continual-Dreamer, it is task-agnostic and utilizes the world model for continual exploration. Continual-Dreamer is sample efficient and outperforms state-of-the-art task-agnostic continual reinforcement learning methods on Minigrid and Minihack benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2742867254 |
source | Publicly Available Content Database |
subjects | Effectiveness Learning Teaching methods |
title | The Effectiveness of World Models for Continual Reinforcement Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20Effectiveness%20of%20World%20Models%20for%20Continual%20Reinforcement%20Learning&rft.jtitle=arXiv.org&rft.au=Kessler,%20Samuel&rft.date=2023-07-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2742867254%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_27428672543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742867254&rft_id=info:pmid/&rfr_iscdi=true |