Loading…

Flow of quantum correlations in noisy two-mode squeezed microwave states

We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise. We focus on two different types of correlations, namely, quantum entanglement and quantum discord. Quantum discord has various intriguing fundamental properties which require experimental v...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-07
Main Authors: Renger, M, Pogorzalek, S, Fesquet, F, Honasoge, K, Kronowetter, F, Chen, Q, Nojiri, Y, Inomata, K, Nakamura, Y, Marx, A, Deppe, F, Gross, R, Fedorov, K G
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Renger, M
Pogorzalek, S
Fesquet, F
Honasoge, K
Kronowetter, F
Chen, Q
Nojiri, Y
Inomata, K
Nakamura, Y
Marx, A
Deppe, F
Gross, R
Fedorov, K G
description We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise. We focus on two different types of correlations, namely, quantum entanglement and quantum discord. Quantum discord has various intriguing fundamental properties which require experimental verification, such as the asymptotic robustness to environmental noise. Here, we experimentally investigate quantum discord in propagating two-mode squeezed microwave states generated via superconducting Josephson parametric amplifiers. By exploiting an asymmetric noise injection into these entangled states, we demonstrate the robustness of quantum discord against thermal noise while verifying the sudden death of entanglement. Furthermore, we investigate the difference between quantum discord and entanglement of formation, which can be directly related to the flow of locally inaccessible information between the environment and the bipartite subsystem. We observe a crossover behavior between quantum discord and entanglement for low noise photon numbers, which is a result of the tripartite nature of noise injection. We demonstrate that the difference between entanglement and quantum discord can be related to the security of certain quantum key distribution protocols.
doi_str_mv 10.48550/arxiv.2207.06090
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2742875677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742875677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a950-31879e3257984bd394858192fa4eae824b511a3234f40f15ac48c1217340a8ab3</originalsourceid><addsrcrecordid>eNotjkFLwzAYhoMgOOZ-gLeA59YvX5ImOcpwThjssvv42qbQ0TYuaVf111vQ0wPv4Xkfxp4E5MpqDS8Uv9pbjggmhwIc3LEVSikyqxAf2CalCwBgYVBruWL7XRdmHhp-nWgYp55XIUbf0diGIfF24ENo0zcf55D1ofY8XSfvf3zN-7aKYabbMo00-vTI7hvqkt_8c81Ou7fTdp8dju8f29dDRk5DJoU1zkvUxllV1tItzVY4bEh58hZVqYUgiVI1ChqhqVK2EiiMVECWSrlmz3_azxiWlDSeL2GKw_J4RqPQGl0YI38BQvJNLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742875677</pqid></control><display><type>article</type><title>Flow of quantum correlations in noisy two-mode squeezed microwave states</title><source>Publicly Available Content Database</source><creator>Renger, M ; Pogorzalek, S ; Fesquet, F ; Honasoge, K ; Kronowetter, F ; Chen, Q ; Nojiri, Y ; Inomata, K ; Nakamura, Y ; Marx, A ; Deppe, F ; Gross, R ; Fedorov, K G</creator><creatorcontrib>Renger, M ; Pogorzalek, S ; Fesquet, F ; Honasoge, K ; Kronowetter, F ; Chen, Q ; Nojiri, Y ; Inomata, K ; Nakamura, Y ; Marx, A ; Deppe, F ; Gross, R ; Fedorov, K G</creatorcontrib><description>We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise. We focus on two different types of correlations, namely, quantum entanglement and quantum discord. Quantum discord has various intriguing fundamental properties which require experimental verification, such as the asymptotic robustness to environmental noise. Here, we experimentally investigate quantum discord in propagating two-mode squeezed microwave states generated via superconducting Josephson parametric amplifiers. By exploiting an asymmetric noise injection into these entangled states, we demonstrate the robustness of quantum discord against thermal noise while verifying the sudden death of entanglement. Furthermore, we investigate the difference between quantum discord and entanglement of formation, which can be directly related to the flow of locally inaccessible information between the environment and the bipartite subsystem. We observe a crossover behavior between quantum discord and entanglement for low noise photon numbers, which is a result of the tripartite nature of noise injection. We demonstrate that the difference between entanglement and quantum discord can be related to the security of certain quantum key distribution protocols.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2207.06090</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Background noise ; Entangled states ; Low noise ; Noise propagation ; Parametric amplifiers ; Propagation modes ; Quantum cryptography ; Quantum entanglement ; Robustness ; Subsystems ; Thermal noise</subject><ispartof>arXiv.org, 2022-07</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2742875677?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Renger, M</creatorcontrib><creatorcontrib>Pogorzalek, S</creatorcontrib><creatorcontrib>Fesquet, F</creatorcontrib><creatorcontrib>Honasoge, K</creatorcontrib><creatorcontrib>Kronowetter, F</creatorcontrib><creatorcontrib>Chen, Q</creatorcontrib><creatorcontrib>Nojiri, Y</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Marx, A</creatorcontrib><creatorcontrib>Deppe, F</creatorcontrib><creatorcontrib>Gross, R</creatorcontrib><creatorcontrib>Fedorov, K G</creatorcontrib><title>Flow of quantum correlations in noisy two-mode squeezed microwave states</title><title>arXiv.org</title><description>We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise. We focus on two different types of correlations, namely, quantum entanglement and quantum discord. Quantum discord has various intriguing fundamental properties which require experimental verification, such as the asymptotic robustness to environmental noise. Here, we experimentally investigate quantum discord in propagating two-mode squeezed microwave states generated via superconducting Josephson parametric amplifiers. By exploiting an asymmetric noise injection into these entangled states, we demonstrate the robustness of quantum discord against thermal noise while verifying the sudden death of entanglement. Furthermore, we investigate the difference between quantum discord and entanglement of formation, which can be directly related to the flow of locally inaccessible information between the environment and the bipartite subsystem. We observe a crossover behavior between quantum discord and entanglement for low noise photon numbers, which is a result of the tripartite nature of noise injection. We demonstrate that the difference between entanglement and quantum discord can be related to the security of certain quantum key distribution protocols.</description><subject>Background noise</subject><subject>Entangled states</subject><subject>Low noise</subject><subject>Noise propagation</subject><subject>Parametric amplifiers</subject><subject>Propagation modes</subject><subject>Quantum cryptography</subject><subject>Quantum entanglement</subject><subject>Robustness</subject><subject>Subsystems</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYhoMgOOZ-gLeA59YvX5ImOcpwThjssvv42qbQ0TYuaVf111vQ0wPv4Xkfxp4E5MpqDS8Uv9pbjggmhwIc3LEVSikyqxAf2CalCwBgYVBruWL7XRdmHhp-nWgYp55XIUbf0diGIfF24ENo0zcf55D1ofY8XSfvf3zN-7aKYabbMo00-vTI7hvqkt_8c81Ou7fTdp8dju8f29dDRk5DJoU1zkvUxllV1tItzVY4bEh58hZVqYUgiVI1ChqhqVK2EiiMVECWSrlmz3_azxiWlDSeL2GKw_J4RqPQGl0YI38BQvJNLw</recordid><startdate>20220713</startdate><enddate>20220713</enddate><creator>Renger, M</creator><creator>Pogorzalek, S</creator><creator>Fesquet, F</creator><creator>Honasoge, K</creator><creator>Kronowetter, F</creator><creator>Chen, Q</creator><creator>Nojiri, Y</creator><creator>Inomata, K</creator><creator>Nakamura, Y</creator><creator>Marx, A</creator><creator>Deppe, F</creator><creator>Gross, R</creator><creator>Fedorov, K G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220713</creationdate><title>Flow of quantum correlations in noisy two-mode squeezed microwave states</title><author>Renger, M ; Pogorzalek, S ; Fesquet, F ; Honasoge, K ; Kronowetter, F ; Chen, Q ; Nojiri, Y ; Inomata, K ; Nakamura, Y ; Marx, A ; Deppe, F ; Gross, R ; Fedorov, K G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a950-31879e3257984bd394858192fa4eae824b511a3234f40f15ac48c1217340a8ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Background noise</topic><topic>Entangled states</topic><topic>Low noise</topic><topic>Noise propagation</topic><topic>Parametric amplifiers</topic><topic>Propagation modes</topic><topic>Quantum cryptography</topic><topic>Quantum entanglement</topic><topic>Robustness</topic><topic>Subsystems</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Renger, M</creatorcontrib><creatorcontrib>Pogorzalek, S</creatorcontrib><creatorcontrib>Fesquet, F</creatorcontrib><creatorcontrib>Honasoge, K</creatorcontrib><creatorcontrib>Kronowetter, F</creatorcontrib><creatorcontrib>Chen, Q</creatorcontrib><creatorcontrib>Nojiri, Y</creatorcontrib><creatorcontrib>Inomata, K</creatorcontrib><creatorcontrib>Nakamura, Y</creatorcontrib><creatorcontrib>Marx, A</creatorcontrib><creatorcontrib>Deppe, F</creatorcontrib><creatorcontrib>Gross, R</creatorcontrib><creatorcontrib>Fedorov, K G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renger, M</au><au>Pogorzalek, S</au><au>Fesquet, F</au><au>Honasoge, K</au><au>Kronowetter, F</au><au>Chen, Q</au><au>Nojiri, Y</au><au>Inomata, K</au><au>Nakamura, Y</au><au>Marx, A</au><au>Deppe, F</au><au>Gross, R</au><au>Fedorov, K G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow of quantum correlations in noisy two-mode squeezed microwave states</atitle><jtitle>arXiv.org</jtitle><date>2022-07-13</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study nonclassical correlations in propagating two-mode squeezed microwave states in the presence of noise. We focus on two different types of correlations, namely, quantum entanglement and quantum discord. Quantum discord has various intriguing fundamental properties which require experimental verification, such as the asymptotic robustness to environmental noise. Here, we experimentally investigate quantum discord in propagating two-mode squeezed microwave states generated via superconducting Josephson parametric amplifiers. By exploiting an asymmetric noise injection into these entangled states, we demonstrate the robustness of quantum discord against thermal noise while verifying the sudden death of entanglement. Furthermore, we investigate the difference between quantum discord and entanglement of formation, which can be directly related to the flow of locally inaccessible information between the environment and the bipartite subsystem. We observe a crossover behavior between quantum discord and entanglement for low noise photon numbers, which is a result of the tripartite nature of noise injection. We demonstrate that the difference between entanglement and quantum discord can be related to the security of certain quantum key distribution protocols.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2207.06090</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2742875677
source Publicly Available Content Database
subjects Background noise
Entangled states
Low noise
Noise propagation
Parametric amplifiers
Propagation modes
Quantum cryptography
Quantum entanglement
Robustness
Subsystems
Thermal noise
title Flow of quantum correlations in noisy two-mode squeezed microwave states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20of%20quantum%20correlations%20in%20noisy%20two-mode%20squeezed%20microwave%20states&rft.jtitle=arXiv.org&rft.au=Renger,%20M&rft.date=2022-07-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2207.06090&rft_dat=%3Cproquest%3E2742875677%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a950-31879e3257984bd394858192fa4eae824b511a3234f40f15ac48c1217340a8ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742875677&rft_id=info:pmid/&rfr_iscdi=true