Loading…
Carbon dioxide methanation on heterogeneous catalysts: a review
The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation...
Saved in:
Published in: | Environmental chemistry letters 2022-12, Vol.20 (6), p.3613-3630 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23 |
container_end_page | 3630 |
container_issue | 6 |
container_start_page | 3613 |
container_title | Environmental chemistry letters |
container_volume | 20 |
creator | Pham, Cham Q. Bahari, Mahadi B. Kumar, Ponnusamy Senthil Ahmed, Shams Forruque Xiao, Leilei Kumar, Sunil Qazaq, Amjad Saleh Siang, Tan Ji Tran, Huu-Tuan Islam, Aminul Al-Gheethi, Adel Vasseghian, Yasser Vo, Dai-Viet N. |
description | The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts. |
doi_str_mv | 10.1007/s10311-022-01483-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742892317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742892317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbDZdLyLFqlDwoueQZKftlnZTk6zatze6ojeHgRmG759JfkLOgV0CY-oqAhMAlHFOGZQTQdkBGUEFjIqqgsPfXopjchLjmmVScT4iN1MTrO-KpvUfbYPFFtPKdCa1eZZzhQmDX2KHvo-FM8ls9jHF68IUAd9afD8lRwuziXj2U8fkZXb3PH2g86f7x-ntnDoBdaL5SVagkg3kqN1EOidVo9BxC5ZLJ0rLeKOkqwx3pjISjC2xVlyVDTrLxZhcDHt3wb_2GJNe-z50-aTODJ_UXIDKFB8oF3yMARd6F9qtCXsNTH8ZpQejdP6-_jZKsywSgyhmuFti-Fv9j-oTmWhq8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742892317</pqid></control><display><type>article</type><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><source>Springer Link</source><creator>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</creator><creatorcontrib>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</creatorcontrib><description>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-022-01483-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Carbon dioxide ; Catalysts ; Catalytic converters ; Chemical engineering ; Chemistry ; Civil engineering ; Climate change ; Conversion ; Deactivation ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Energy resources ; Environment ; Environmental Chemistry ; Environmental engineering ; Geochemistry ; Global warming ; Hydrogenation ; Laboratories ; Methanation ; Methane ; Pollution ; Review ; Science ; Selectivity</subject><ispartof>Environmental chemistry letters, 2022-12, Vol.20 (6), p.3613-3630</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</citedby><cites>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</cites><orcidid>0000-0001-9064-7016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pham, Cham Q.</creatorcontrib><creatorcontrib>Bahari, Mahadi B.</creatorcontrib><creatorcontrib>Kumar, Ponnusamy Senthil</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Xiao, Leilei</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Qazaq, Amjad Saleh</creatorcontrib><creatorcontrib>Siang, Tan Ji</creatorcontrib><creatorcontrib>Tran, Huu-Tuan</creatorcontrib><creatorcontrib>Islam, Aminul</creatorcontrib><creatorcontrib>Al-Gheethi, Adel</creatorcontrib><creatorcontrib>Vasseghian, Yasser</creatorcontrib><creatorcontrib>Vo, Dai-Viet N.</creatorcontrib><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</description><subject>Analytical Chemistry</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Civil engineering</subject><subject>Climate change</subject><subject>Conversion</subject><subject>Deactivation</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Energy resources</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental engineering</subject><subject>Geochemistry</subject><subject>Global warming</subject><subject>Hydrogenation</subject><subject>Laboratories</subject><subject>Methanation</subject><subject>Methane</subject><subject>Pollution</subject><subject>Review</subject><subject>Science</subject><subject>Selectivity</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbDZdLyLFqlDwoueQZKftlnZTk6zatze6ojeHgRmG759JfkLOgV0CY-oqAhMAlHFOGZQTQdkBGUEFjIqqgsPfXopjchLjmmVScT4iN1MTrO-KpvUfbYPFFtPKdCa1eZZzhQmDX2KHvo-FM8ls9jHF68IUAd9afD8lRwuziXj2U8fkZXb3PH2g86f7x-ntnDoBdaL5SVagkg3kqN1EOidVo9BxC5ZLJ0rLeKOkqwx3pjISjC2xVlyVDTrLxZhcDHt3wb_2GJNe-z50-aTODJ_UXIDKFB8oF3yMARd6F9qtCXsNTH8ZpQejdP6-_jZKsywSgyhmuFti-Fv9j-oTmWhq8A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pham, Cham Q.</creator><creator>Bahari, Mahadi B.</creator><creator>Kumar, Ponnusamy Senthil</creator><creator>Ahmed, Shams Forruque</creator><creator>Xiao, Leilei</creator><creator>Kumar, Sunil</creator><creator>Qazaq, Amjad Saleh</creator><creator>Siang, Tan Ji</creator><creator>Tran, Huu-Tuan</creator><creator>Islam, Aminul</creator><creator>Al-Gheethi, Adel</creator><creator>Vasseghian, Yasser</creator><creator>Vo, Dai-Viet N.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9064-7016</orcidid></search><sort><creationdate>20221201</creationdate><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><author>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Civil engineering</topic><topic>Climate change</topic><topic>Conversion</topic><topic>Deactivation</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Energy resources</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental engineering</topic><topic>Geochemistry</topic><topic>Global warming</topic><topic>Hydrogenation</topic><topic>Laboratories</topic><topic>Methanation</topic><topic>Methane</topic><topic>Pollution</topic><topic>Review</topic><topic>Science</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Cham Q.</creatorcontrib><creatorcontrib>Bahari, Mahadi B.</creatorcontrib><creatorcontrib>Kumar, Ponnusamy Senthil</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Xiao, Leilei</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Qazaq, Amjad Saleh</creatorcontrib><creatorcontrib>Siang, Tan Ji</creatorcontrib><creatorcontrib>Tran, Huu-Tuan</creatorcontrib><creatorcontrib>Islam, Aminul</creatorcontrib><creatorcontrib>Al-Gheethi, Adel</creatorcontrib><creatorcontrib>Vasseghian, Yasser</creatorcontrib><creatorcontrib>Vo, Dai-Viet N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Cham Q.</au><au>Bahari, Mahadi B.</au><au>Kumar, Ponnusamy Senthil</au><au>Ahmed, Shams Forruque</au><au>Xiao, Leilei</au><au>Kumar, Sunil</au><au>Qazaq, Amjad Saleh</au><au>Siang, Tan Ji</au><au>Tran, Huu-Tuan</au><au>Islam, Aminul</au><au>Al-Gheethi, Adel</au><au>Vasseghian, Yasser</au><au>Vo, Dai-Viet N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dioxide methanation on heterogeneous catalysts: a review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>3613</spage><epage>3630</epage><pages>3613-3630</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-022-01483-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9064-7016</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1610-3653 |
ispartof | Environmental chemistry letters, 2022-12, Vol.20 (6), p.3613-3630 |
issn | 1610-3653 1610-3661 |
language | eng |
recordid | cdi_proquest_journals_2742892317 |
source | Springer Link |
subjects | Analytical Chemistry Carbon dioxide Catalysts Catalytic converters Chemical engineering Chemistry Civil engineering Climate change Conversion Deactivation Earth and Environmental Science Ecotoxicology Emissions Energy resources Environment Environmental Chemistry Environmental engineering Geochemistry Global warming Hydrogenation Laboratories Methanation Methane Pollution Review Science Selectivity |
title | Carbon dioxide methanation on heterogeneous catalysts: a review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dioxide%20methanation%20on%20heterogeneous%20catalysts:%20a%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Pham,%20Cham%20Q.&rft.date=2022-12-01&rft.volume=20&rft.issue=6&rft.spage=3613&rft.epage=3630&rft.pages=3613-3630&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-022-01483-0&rft_dat=%3Cproquest_cross%3E2742892317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742892317&rft_id=info:pmid/&rfr_iscdi=true |