Loading…

Carbon dioxide methanation on heterogeneous catalysts: a review

The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation...

Full description

Saved in:
Bibliographic Details
Published in:Environmental chemistry letters 2022-12, Vol.20 (6), p.3613-3630
Main Authors: Pham, Cham Q., Bahari, Mahadi B., Kumar, Ponnusamy Senthil, Ahmed, Shams Forruque, Xiao, Leilei, Kumar, Sunil, Qazaq, Amjad Saleh, Siang, Tan Ji, Tran, Huu-Tuan, Islam, Aminul, Al-Gheethi, Adel, Vasseghian, Yasser, Vo, Dai-Viet N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23
cites cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23
container_end_page 3630
container_issue 6
container_start_page 3613
container_title Environmental chemistry letters
container_volume 20
creator Pham, Cham Q.
Bahari, Mahadi B.
Kumar, Ponnusamy Senthil
Ahmed, Shams Forruque
Xiao, Leilei
Kumar, Sunil
Qazaq, Amjad Saleh
Siang, Tan Ji
Tran, Huu-Tuan
Islam, Aminul
Al-Gheethi, Adel
Vasseghian, Yasser
Vo, Dai-Viet N.
description The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.
doi_str_mv 10.1007/s10311-022-01483-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2742892317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2742892317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbDZdLyLFqlDwoueQZKftlnZTk6zatze6ojeHgRmG759JfkLOgV0CY-oqAhMAlHFOGZQTQdkBGUEFjIqqgsPfXopjchLjmmVScT4iN1MTrO-KpvUfbYPFFtPKdCa1eZZzhQmDX2KHvo-FM8ls9jHF68IUAd9afD8lRwuziXj2U8fkZXb3PH2g86f7x-ntnDoBdaL5SVagkg3kqN1EOidVo9BxC5ZLJ0rLeKOkqwx3pjISjC2xVlyVDTrLxZhcDHt3wb_2GJNe-z50-aTODJ_UXIDKFB8oF3yMARd6F9qtCXsNTH8ZpQejdP6-_jZKsywSgyhmuFti-Fv9j-oTmWhq8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2742892317</pqid></control><display><type>article</type><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><source>Springer Link</source><creator>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</creator><creatorcontrib>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</creatorcontrib><description>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</description><identifier>ISSN: 1610-3653</identifier><identifier>EISSN: 1610-3661</identifier><identifier>DOI: 10.1007/s10311-022-01483-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Carbon dioxide ; Catalysts ; Catalytic converters ; Chemical engineering ; Chemistry ; Civil engineering ; Climate change ; Conversion ; Deactivation ; Earth and Environmental Science ; Ecotoxicology ; Emissions ; Energy resources ; Environment ; Environmental Chemistry ; Environmental engineering ; Geochemistry ; Global warming ; Hydrogenation ; Laboratories ; Methanation ; Methane ; Pollution ; Review ; Science ; Selectivity</subject><ispartof>Environmental chemistry letters, 2022-12, Vol.20 (6), p.3613-3630</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</citedby><cites>FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</cites><orcidid>0000-0001-9064-7016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pham, Cham Q.</creatorcontrib><creatorcontrib>Bahari, Mahadi B.</creatorcontrib><creatorcontrib>Kumar, Ponnusamy Senthil</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Xiao, Leilei</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Qazaq, Amjad Saleh</creatorcontrib><creatorcontrib>Siang, Tan Ji</creatorcontrib><creatorcontrib>Tran, Huu-Tuan</creatorcontrib><creatorcontrib>Islam, Aminul</creatorcontrib><creatorcontrib>Al-Gheethi, Adel</creatorcontrib><creatorcontrib>Vasseghian, Yasser</creatorcontrib><creatorcontrib>Vo, Dai-Viet N.</creatorcontrib><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><title>Environmental chemistry letters</title><addtitle>Environ Chem Lett</addtitle><description>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</description><subject>Analytical Chemistry</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Civil engineering</subject><subject>Climate change</subject><subject>Conversion</subject><subject>Deactivation</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Emissions</subject><subject>Energy resources</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental engineering</subject><subject>Geochemistry</subject><subject>Global warming</subject><subject>Hydrogenation</subject><subject>Laboratories</subject><subject>Methanation</subject><subject>Methane</subject><subject>Pollution</subject><subject>Review</subject><subject>Science</subject><subject>Selectivity</subject><issn>1610-3653</issn><issn>1610-3661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4GnBczSTbDZdLyLFqlDwoueQZKftlnZTk6zatze6ojeHgRmG759JfkLOgV0CY-oqAhMAlHFOGZQTQdkBGUEFjIqqgsPfXopjchLjmmVScT4iN1MTrO-KpvUfbYPFFtPKdCa1eZZzhQmDX2KHvo-FM8ls9jHF68IUAd9afD8lRwuziXj2U8fkZXb3PH2g86f7x-ntnDoBdaL5SVagkg3kqN1EOidVo9BxC5ZLJ0rLeKOkqwx3pjISjC2xVlyVDTrLxZhcDHt3wb_2GJNe-z50-aTODJ_UXIDKFB8oF3yMARd6F9qtCXsNTH8ZpQejdP6-_jZKsywSgyhmuFti-Fv9j-oTmWhq8A</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Pham, Cham Q.</creator><creator>Bahari, Mahadi B.</creator><creator>Kumar, Ponnusamy Senthil</creator><creator>Ahmed, Shams Forruque</creator><creator>Xiao, Leilei</creator><creator>Kumar, Sunil</creator><creator>Qazaq, Amjad Saleh</creator><creator>Siang, Tan Ji</creator><creator>Tran, Huu-Tuan</creator><creator>Islam, Aminul</creator><creator>Al-Gheethi, Adel</creator><creator>Vasseghian, Yasser</creator><creator>Vo, Dai-Viet N.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9064-7016</orcidid></search><sort><creationdate>20221201</creationdate><title>Carbon dioxide methanation on heterogeneous catalysts: a review</title><author>Pham, Cham Q. ; Bahari, Mahadi B. ; Kumar, Ponnusamy Senthil ; Ahmed, Shams Forruque ; Xiao, Leilei ; Kumar, Sunil ; Qazaq, Amjad Saleh ; Siang, Tan Ji ; Tran, Huu-Tuan ; Islam, Aminul ; Al-Gheethi, Adel ; Vasseghian, Yasser ; Vo, Dai-Viet N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical Chemistry</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Civil engineering</topic><topic>Climate change</topic><topic>Conversion</topic><topic>Deactivation</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Emissions</topic><topic>Energy resources</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental engineering</topic><topic>Geochemistry</topic><topic>Global warming</topic><topic>Hydrogenation</topic><topic>Laboratories</topic><topic>Methanation</topic><topic>Methane</topic><topic>Pollution</topic><topic>Review</topic><topic>Science</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pham, Cham Q.</creatorcontrib><creatorcontrib>Bahari, Mahadi B.</creatorcontrib><creatorcontrib>Kumar, Ponnusamy Senthil</creatorcontrib><creatorcontrib>Ahmed, Shams Forruque</creatorcontrib><creatorcontrib>Xiao, Leilei</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><creatorcontrib>Qazaq, Amjad Saleh</creatorcontrib><creatorcontrib>Siang, Tan Ji</creatorcontrib><creatorcontrib>Tran, Huu-Tuan</creatorcontrib><creatorcontrib>Islam, Aminul</creatorcontrib><creatorcontrib>Al-Gheethi, Adel</creatorcontrib><creatorcontrib>Vasseghian, Yasser</creatorcontrib><creatorcontrib>Vo, Dai-Viet N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pham, Cham Q.</au><au>Bahari, Mahadi B.</au><au>Kumar, Ponnusamy Senthil</au><au>Ahmed, Shams Forruque</au><au>Xiao, Leilei</au><au>Kumar, Sunil</au><au>Qazaq, Amjad Saleh</au><au>Siang, Tan Ji</au><au>Tran, Huu-Tuan</au><au>Islam, Aminul</au><au>Al-Gheethi, Adel</au><au>Vasseghian, Yasser</au><au>Vo, Dai-Viet N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dioxide methanation on heterogeneous catalysts: a review</atitle><jtitle>Environmental chemistry letters</jtitle><stitle>Environ Chem Lett</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>3613</spage><epage>3630</epage><pages>3613-3630</pages><issn>1610-3653</issn><eissn>1610-3661</eissn><abstract>The Ukraine war has strongly accentuated the ongoing energy and environmental issues, thus requiring a fast development of alternative and more local fuels. For instance, recent research has focused on the catalytic conversion of carbon dioxide into methane. Here we review carbon dioxide methanation with dihydrogen, reaction conditions, catalyst properties, and preparation methods. Carbon dioxide conversion and methane selectivity can reach 90% and above by increasing temperature from 250 to 400 °C, regardless of catalyst types. Methane yields can reach up to 96% by increasing dihydrogen to carbon dioxide feed ratios from 2:1 to 4:1. We discuss issues of sintering, fouling, and poisoning that lead to the deactivation of catalysts.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10311-022-01483-0</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9064-7016</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1610-3653
ispartof Environmental chemistry letters, 2022-12, Vol.20 (6), p.3613-3630
issn 1610-3653
1610-3661
language eng
recordid cdi_proquest_journals_2742892317
source Springer Link
subjects Analytical Chemistry
Carbon dioxide
Catalysts
Catalytic converters
Chemical engineering
Chemistry
Civil engineering
Climate change
Conversion
Deactivation
Earth and Environmental Science
Ecotoxicology
Emissions
Energy resources
Environment
Environmental Chemistry
Environmental engineering
Geochemistry
Global warming
Hydrogenation
Laboratories
Methanation
Methane
Pollution
Review
Science
Selectivity
title Carbon dioxide methanation on heterogeneous catalysts: a review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dioxide%20methanation%20on%20heterogeneous%20catalysts:%20a%20review&rft.jtitle=Environmental%20chemistry%20letters&rft.au=Pham,%20Cham%20Q.&rft.date=2022-12-01&rft.volume=20&rft.issue=6&rft.spage=3613&rft.epage=3630&rft.pages=3613-3630&rft.issn=1610-3653&rft.eissn=1610-3661&rft_id=info:doi/10.1007/s10311-022-01483-0&rft_dat=%3Cproquest_cross%3E2742892317%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-483b3e75d11119c85cc57d7ec2b1b25c34b02d75c6a2ca6a51ab4e97274decb23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2742892317&rft_id=info:pmid/&rfr_iscdi=true